William B. Miller Jr. , František Baluška , Arthur S. Reber , Predrag Slijepčević
{"title":"Biology in the 21st century: Natural selection is cognitive selection","authors":"William B. Miller Jr. , František Baluška , Arthur S. Reber , Predrag Slijepčević","doi":"10.1016/j.pbiomolbio.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"190 ","pages":"Pages 170-184"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610724000464","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.