Optimizing kinetic evaluation through CFD-based analysis of heat and mass transfer in a high-pressure TGA

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-05-14 DOI:10.1002/aic.18473
Fengbo An, Felix Küster, Stefan Guhl, Martin Gräbner, Andreas Richter
{"title":"Optimizing kinetic evaluation through CFD-based analysis of heat and mass transfer in a high-pressure TGA","authors":"Fengbo An,&nbsp;Felix Küster,&nbsp;Stefan Guhl,&nbsp;Martin Gräbner,&nbsp;Andreas Richter","doi":"10.1002/aic.18473","DOIUrl":null,"url":null,"abstract":"<p>Accurate measurement of heterogeneous reaction kinetics in thermogravimetric analysis (TGA) requires accurate estimation of concentration and temperature in the sample. However, this information is difficult to estimate during the measurement, especially at high temperatures and pressures. Computational Fluid Dynamics (CFD) is used to perform a comprehensive analysis of the temperature and species distribution throughout a high-temperature, high-pressure test rig, including temperature and species transport within the probe sample. The temperature and gas concentration within the sample are accurately calculated by CFD, providing a much deeper insight into the local temperature and species distribution. The numerical results show a significant decrease in gas concentration and temperature in the core region of the packed bed, indicating that bed diffusion dominates the overall conversion for the char reaction studied in this article. The re-evaluation based on the model considers the limitations of heat and mass transfer at each measurement point. This forms the basis for a novel, model-driven approach that derives heterogeneous kinetics from TGA measurements with significantly improved accuracy and reliability.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18473","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18473","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate measurement of heterogeneous reaction kinetics in thermogravimetric analysis (TGA) requires accurate estimation of concentration and temperature in the sample. However, this information is difficult to estimate during the measurement, especially at high temperatures and pressures. Computational Fluid Dynamics (CFD) is used to perform a comprehensive analysis of the temperature and species distribution throughout a high-temperature, high-pressure test rig, including temperature and species transport within the probe sample. The temperature and gas concentration within the sample are accurately calculated by CFD, providing a much deeper insight into the local temperature and species distribution. The numerical results show a significant decrease in gas concentration and temperature in the core region of the packed bed, indicating that bed diffusion dominates the overall conversion for the char reaction studied in this article. The re-evaluation based on the model considers the limitations of heat and mass transfer at each measurement point. This forms the basis for a novel, model-driven approach that derives heterogeneous kinetics from TGA measurements with significantly improved accuracy and reliability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于 CFD 的高压 TGA 传热传质分析优化动力学评估
在热重分析(TGA)中准确测量异相反应动力学需要准确估计样品中的浓度和温度。然而,这些信息在测量过程中很难估计,尤其是在高温高压条件下。计算流体动力学(CFD)用于全面分析整个高温高压试验台的温度和物种分布,包括探针样品内的温度和物种迁移。样品内的温度和气体浓度可通过 CFD 精确计算,从而更深入地了解局部温度和物种分布情况。数值结果表明,在填料床的核心区域,气体浓度和温度显著下降,这表明床层扩散在本文研究的炭化反应的整体转化中占主导地位。基于该模型的重新评估考虑了每个测量点传热和传质的局限性。这为一种新颖的、模型驱动的方法奠定了基础,该方法可从 TGA 测量中推导出异质动力学,其准确性和可靠性大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Modeling and simulation of bi‐continuous jammed emulsion membrane reactors for enhanced biphasic enzymatic reactions Multiscale screening of metal-organic frameworks for one-step ethylene purification in pressure-swing adsorption processes Mechanism and kinetics study of the chemically initiated oxidative polymerization of hexafluoropropylene Carbon dioxide capture by aqueous glucosamine solutions: Pilot plant measurements and a theoretical study Tuning the CO2 hydrogenation activity and selectivity of TiO2 nanorods supported Rh catalyst via secondary-metals addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1