Enabling High Stability of Co-Free LiNiO2 Cathode via a Sulfide-Enriched Cathode Electrolyte Interface

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-05-14 DOI:10.1021/acsenergylett.4c00652
Zhaowen Bai, Zhehan Ying, Fengqi Zhang, Wei Wang, Zhiyong Huang, Tingting Yang, Wenjie Li, Weixia Dong, Jie Yan, Cong Lin, Liang Hu, Tiancheng Liu, Zezhou Lin, Tianyi Li, Chengjun Sun, Luxi Li, Yang Wang, Qingyu Kong, Shaonan Gu, Hui Shen, Shijie Hao, Xuanming Chen, Leung Yuk Frank Lam, Xijun Hu, Haitao Huang, Xun-Li Wang, Fangxi Xie, Guohua Chen, Qi Liu* and Yang Ren*, 
{"title":"Enabling High Stability of Co-Free LiNiO2 Cathode via a Sulfide-Enriched Cathode Electrolyte Interface","authors":"Zhaowen Bai,&nbsp;Zhehan Ying,&nbsp;Fengqi Zhang,&nbsp;Wei Wang,&nbsp;Zhiyong Huang,&nbsp;Tingting Yang,&nbsp;Wenjie Li,&nbsp;Weixia Dong,&nbsp;Jie Yan,&nbsp;Cong Lin,&nbsp;Liang Hu,&nbsp;Tiancheng Liu,&nbsp;Zezhou Lin,&nbsp;Tianyi Li,&nbsp;Chengjun Sun,&nbsp;Luxi Li,&nbsp;Yang Wang,&nbsp;Qingyu Kong,&nbsp;Shaonan Gu,&nbsp;Hui Shen,&nbsp;Shijie Hao,&nbsp;Xuanming Chen,&nbsp;Leung Yuk Frank Lam,&nbsp;Xijun Hu,&nbsp;Haitao Huang,&nbsp;Xun-Li Wang,&nbsp;Fangxi Xie,&nbsp;Guohua Chen,&nbsp;Qi Liu* and Yang Ren*,&nbsp;","doi":"10.1021/acsenergylett.4c00652","DOIUrl":null,"url":null,"abstract":"<p >Cobalt-free lithium nickel oxide (LNO) has garnered significant interest as the end member of high-nickel layered oxide cathodes for next-generation batteries. However, its practical performance notably underperforms expectations because of the structural degradation and unstable interfacial chemistry with electrolytes during cycling. Here, we report that a durable cathode-electrolyte interface (CEI), enriched by in situ formed sulfides and borides, can inhibit LNO structural degradation and suppress Ni ion dissolution. With the CEI protection, the stability of LNO can be remarkably extended, and batteries demonstrate a capacity retention rate of 84% (30 °C) and 79% (50 °C) after 200 cycles at 1C, respectively. These results demonstrate that enriching CEI with sulfur-containing species can effectively stabilize the interfacial chemistry of LNO, particularly at an elevated temperature of 50 °C. This finding provides valuable perspectives on designing electrolytes for cobalt-free LNO and other high-Ni cathodes toward the development of next-generation high-energy-density lithium-ion batteries.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00652","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt-free lithium nickel oxide (LNO) has garnered significant interest as the end member of high-nickel layered oxide cathodes for next-generation batteries. However, its practical performance notably underperforms expectations because of the structural degradation and unstable interfacial chemistry with electrolytes during cycling. Here, we report that a durable cathode-electrolyte interface (CEI), enriched by in situ formed sulfides and borides, can inhibit LNO structural degradation and suppress Ni ion dissolution. With the CEI protection, the stability of LNO can be remarkably extended, and batteries demonstrate a capacity retention rate of 84% (30 °C) and 79% (50 °C) after 200 cycles at 1C, respectively. These results demonstrate that enriching CEI with sulfur-containing species can effectively stabilize the interfacial chemistry of LNO, particularly at an elevated temperature of 50 °C. This finding provides valuable perspectives on designing electrolytes for cobalt-free LNO and other high-Ni cathodes toward the development of next-generation high-energy-density lithium-ion batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过富含硫化物的阴极电解质界面实现无共价二氧化镍锂阴极的高稳定性
无钴锂镍氧化物(LNO)作为下一代电池中高镍层状氧化物阴极的最终成分,引起了人们的极大兴趣。然而,由于在循环过程中结构退化以及与电解质的界面化学性质不稳定,其实际性能明显低于预期。在此,我们报告了由原位形成的硫化物和硼化物富集而成的耐用阴极-电解质界面(CEI)可以抑制 LNO 的结构降解并抑制镍离子的溶解。在 CEI 的保护下,LNO 的稳定性显著提高,电池在 1C 下循环 200 次后,容量保持率分别为 84% (30 °C) 和 79% (50 °C) 。这些结果表明,用含硫物种富集 CEI 可以有效稳定 LNO 的界面化学性质,尤其是在 50 °C 的高温条件下。这一发现为无钴 LNO 和其他高镍正极的电解质设计提供了宝贵的视角,有助于开发新一代高能量密度锂离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries Generative Design and Experimental Validation of Non-Fullerene Acceptors for Photovoltaics Rational Third Component Choices Drive Enhanced Morphology and Efficiency in Ternary Blend Organic Solar Cells Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication Correction to “Multicomponent Approach for Stable Methylammonium-Free Tin–Lead Perovskite Solar Cells”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1