Studies of Protein Binding to Biomimetic Membranes Using a Group of Uniform Materials Based on Organic Salts Derived From 8-Anilino-1-naphthalenesulfonic Acid.
Ana M O Azevedo, Cláudia Nunes, Tânia Moniz, Rocío L Pérez, Caitlan E Ayala, Maria Rangel, Salette Reis, João L M Santos, Isiah M Warner, M Lúcia M F S Saraiva
{"title":"Studies of Protein Binding to Biomimetic Membranes Using a Group of Uniform Materials Based on Organic Salts Derived From 8-Anilino-1-naphthalenesulfonic Acid.","authors":"Ana M O Azevedo, Cláudia Nunes, Tânia Moniz, Rocío L Pérez, Caitlan E Ayala, Maria Rangel, Salette Reis, João L M Santos, Isiah M Warner, M Lúcia M F S Saraiva","doi":"10.1177/00037028241249768","DOIUrl":null,"url":null,"abstract":"<p><p>Tuning the 8-anilino-1-naphthalenesulfonic acid (ANS) structure usually requires harsh conditions and long reaction times, which can result in low yields. Herein, ANS was modified to form an ANS group of uniform materials based on organic salts (GUMBOS), prepared with simple metathesis reactions and distinct cations, namely tetrabutylammonium (N<sub>4444</sub>), tetrahexylammonium (N<sub>6666</sub>), and tetrabutylphosphonium (P<sub>4444</sub>). These ANS-based GUMBOS were investigated as fluorescent probes for membrane binding studies with four proteins having distinct physicochemical properties. Liposomes of 1,2-dimyristoyl-<i>sn</i>-glycero-3-phosphocholine were employed as membrane models as a result of their ability to mimic the structure and chemical composition of cell membranes. Changes in fluorescence intensity were used to monitor protein binding to liposomes, and adsorption data were fitted to a Freundlich-like isotherm. It was determined that [N<sub>4444</sub>][ANS] and [P<sub>4444</sub>][ANS] GUMBOS have enhanced optical properties and lipophilicity as compared to parent ANS. As a result, these two GUMBOS were selected for subsequent protein-membrane binding studies. Both [N<sub>4444</sub>][ANS] and [P<sub>4444</sub>][ANS] GUMBOS and parent ANS independently reached membrane saturation within the same concentration range. Furthermore, distinct fluorescence responses were observed upon the addition of proteins to each probe, which demonstrates the impact of properties such as lipophilicity on the binding process. The relative maintenance of binding cooperativity and maximum fluorescence intensity suggests that proteins compete with ANS-based probes for the same membrane binding sites. Finally, this GUMBOS-based approach is simple, rapid, and involves relatively small amounts of reagents, making it attractive for high-throughput purposes. These results presented herein can also provide relevant information for designing GUMBOS with ameliorated properties.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241249768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tuning the 8-anilino-1-naphthalenesulfonic acid (ANS) structure usually requires harsh conditions and long reaction times, which can result in low yields. Herein, ANS was modified to form an ANS group of uniform materials based on organic salts (GUMBOS), prepared with simple metathesis reactions and distinct cations, namely tetrabutylammonium (N4444), tetrahexylammonium (N6666), and tetrabutylphosphonium (P4444). These ANS-based GUMBOS were investigated as fluorescent probes for membrane binding studies with four proteins having distinct physicochemical properties. Liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine were employed as membrane models as a result of their ability to mimic the structure and chemical composition of cell membranes. Changes in fluorescence intensity were used to monitor protein binding to liposomes, and adsorption data were fitted to a Freundlich-like isotherm. It was determined that [N4444][ANS] and [P4444][ANS] GUMBOS have enhanced optical properties and lipophilicity as compared to parent ANS. As a result, these two GUMBOS were selected for subsequent protein-membrane binding studies. Both [N4444][ANS] and [P4444][ANS] GUMBOS and parent ANS independently reached membrane saturation within the same concentration range. Furthermore, distinct fluorescence responses were observed upon the addition of proteins to each probe, which demonstrates the impact of properties such as lipophilicity on the binding process. The relative maintenance of binding cooperativity and maximum fluorescence intensity suggests that proteins compete with ANS-based probes for the same membrane binding sites. Finally, this GUMBOS-based approach is simple, rapid, and involves relatively small amounts of reagents, making it attractive for high-throughput purposes. These results presented herein can also provide relevant information for designing GUMBOS with ameliorated properties.
调整 8-苯胺基-1-萘磺酸(ANS)的结构通常需要苛刻的条件和较长的反应时间,这可能导致产量较低。在此,我们对 ANS 进行了改性,形成了基于有机盐的 ANS 组统一材料(GUMBOS),这些材料通过简单的偏合成反应和不同的阳离子(即四丁基铵(N4444)、四己基铵(N6666)和四丁基鏻(P4444))制备而成。研究人员将这些基于 ANS 的 GUMBOS 作为荧光探针,与四种具有不同理化特性的蛋白质进行膜结合研究。由于 1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱脂质体能够模拟细胞膜的结构和化学成分,因此被用作膜模型。利用荧光强度的变化来监测蛋白质与脂质体的结合,并将吸附数据拟合为类似于弗氏等温线。结果表明,与母体 ANS 相比,[N4444][ANS] 和 [P4444][ANS] GUMBOS 具有更强的光学特性和亲油性。因此,这两种 GUMBOS 被选中用于随后的蛋白质-膜结合研究。在相同的浓度范围内,[N4444][ANS]和[P4444][ANS] GUMBOS 和母体 ANS 都能独立达到膜饱和。此外,在向每种探针添加蛋白质时都观察到了不同的荧光反应,这表明了亲脂性等特性对结合过程的影响。结合合作性和最大荧光强度的相对维持表明,蛋白质与基于 ANS 的探针竞争相同的膜结合位点。最后,这种基于 GUMBOS 的方法简单、快速,所需的试剂也相对较少,因此对高通量研究具有吸引力。本文介绍的这些结果还能为设计具有更佳特性的 GUMBOS 提供相关信息。