Taylor L Virgin, Prinpida Sonthiphand, Sara Coyotzi, Michael W Hall, Jason J Venkiteswaran, Richard J Elgood, Sherry L Schiff, Josh D Neufeld
{"title":"Microbial communities change along the 300 km length of the Grand River for extreme high- and low-flow regimes.","authors":"Taylor L Virgin, Prinpida Sonthiphand, Sara Coyotzi, Michael W Hall, Jason J Venkiteswaran, Richard J Elgood, Sherry L Schiff, Josh D Neufeld","doi":"10.1139/cjm-2023-0092","DOIUrl":null,"url":null,"abstract":"<p><p>The Grand River watershed is the largest catchment in southern Ontario. The river's northern and southern sections are influenced by agriculture, whereas central regions receive wastewater effluent and urban runoff. To characterize in-river microbial communities, as they relate to spatial and environmental factors, we conducted two same-day sampling events along the entire 300 km length of the river, representing contrasting flow seasons (high flow spring melt and low flow end of summer). Through high-throughput sequencing of 16S rRNA genes, we assessed the relationship between river microbiota and spatial and physicochemical variables. Flow season had a greater impact on communities than spatial or diel effects and profiles diverged with distance between sites under both flow conditions, but low-flow profiles exhibited higher beta diversity. High-flow profiles showed greater species richness and increased presence of soil and sediment taxa, which may relate to increased input from terrestrial sources. Total suspended solids, dissolved inorganic carbon, and distance from headwaters significantly explained microbial community variation during the low-flow event, whereas conductivity, sulfate, and nitrite were significant explanatory factors for spring melt. This study establishes a baseline for the Grand River's microbial community, serving as a foundation for modeling the microbiology of anthropogenically impacted freshwater systems affected by lotic processes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Grand River watershed is the largest catchment in southern Ontario. The river's northern and southern sections are influenced by agriculture, whereas central regions receive wastewater effluent and urban runoff. To characterize in-river microbial communities, as they relate to spatial and environmental factors, we conducted two same-day sampling events along the entire 300 km length of the river, representing contrasting flow seasons (high flow spring melt and low flow end of summer). Through high-throughput sequencing of 16S rRNA genes, we assessed the relationship between river microbiota and spatial and physicochemical variables. Flow season had a greater impact on communities than spatial or diel effects and profiles diverged with distance between sites under both flow conditions, but low-flow profiles exhibited higher beta diversity. High-flow profiles showed greater species richness and increased presence of soil and sediment taxa, which may relate to increased input from terrestrial sources. Total suspended solids, dissolved inorganic carbon, and distance from headwaters significantly explained microbial community variation during the low-flow event, whereas conductivity, sulfate, and nitrite were significant explanatory factors for spring melt. This study establishes a baseline for the Grand River's microbial community, serving as a foundation for modeling the microbiology of anthropogenically impacted freshwater systems affected by lotic processes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.