Research progress of ZIC5 for tumor metastasis.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Society transactions Pub Date : 2024-06-26 DOI:10.1042/BST20231263
Yiming Zhong, Shangzhi Yang, Xianli Wang, Chuanyu Sun
{"title":"Research progress of ZIC5 for tumor metastasis.","authors":"Yiming Zhong, Shangzhi Yang, Xianli Wang, Chuanyu Sun","doi":"10.1042/BST20231263","DOIUrl":null,"url":null,"abstract":"<p><p>The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231263","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZIC5治疗肿瘤转移的研究进展。
小脑锌指蛋白(ZIC)家族由五个成员(ZIC1-5)组成,与黑腹果蝇的奇数配对(OPA)基因同源。这些转录因子含有五个 Cys2His 锌指结构域,是人类细胞中最丰富的转录因子家族之一。ZIC 蛋白对转录调控和染色质重塑有重要贡献。作为 ZIC 家族的一员,ZIC5 对动物的生长和发育至关重要。近年来,许多研究都在探讨 ZIC 蛋白与癌症以及肿瘤转移之间的联系。许多研究发现,在肿瘤组织中,转录和翻译过程会增加 ZIC5 的表达,而这与肿瘤的侵袭性有关。本综述旨在客观总结 ZIC5 对肿瘤转移的影响,并探讨 ZIC5 靶点在肿瘤治疗和癌症早期检测中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
期刊最新文献
How does CHD4 slide nucleosomes? Progress towards understanding risk factor mechanisms in the development of autism spectrum disorders. Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Histone H3 mutations and their impact on genome stability maintenance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1