Relation Between Exposure to Tobacco Smoke Assessed by Serum Cotinine Concentration and Questionnaire Method, and Serum Renalase Concentration-the Importance of the Coexistence of Arterial Hypertension and Other Cardiovascular Diseases.
Aleksandra Żórawik, Wojciech Hajdusianek, Agnieszka Kusnerż, Iwona Markiewicz-Górka, Aleksandra Jaremków, Helena Martynowicz, Krystyna Pawlas, Grzegorz Mazur, Rafał Poręba, Paweł Gać
{"title":"Relation Between Exposure to Tobacco Smoke Assessed by Serum Cotinine Concentration and Questionnaire Method, and Serum Renalase Concentration-the Importance of the Coexistence of Arterial Hypertension and Other Cardiovascular Diseases.","authors":"Aleksandra Żórawik, Wojciech Hajdusianek, Agnieszka Kusnerż, Iwona Markiewicz-Górka, Aleksandra Jaremków, Helena Martynowicz, Krystyna Pawlas, Grzegorz Mazur, Rafał Poręba, Paweł Gać","doi":"10.1007/s12012-024-09868-z","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to tobacco smoke (ETS) is one of the main risk factors for cardiovascular disease (CVD). Renalase is a protein that may play a role in the pathogenesis of CVD. The aim of the study was to assess the relationship between ETS and serum renalase concentration. A group of 109 patients was recruited for this study (49.7 ± 14.7 years). In accordance with the questionnaire, patients were divided into the following subgroups: subgroup A- declaring themselves active smokers (n = 36), subgroup B- declaring themselves non-smokers and exposed to environmental tobacco smoke (n = 35), subgroup C- declaring themselves non-smokers and not exposed to environmental tobacco smoke (n = 38). The same patients were divided based on cotinine concentration into the following subgroups: subgroup D- active smokers (n = 42), subgroup E- non-smokers exposed to environmental tobacco smoke (n = 66), and subgroup F- non-smokers not exposed to environmental tobacco smoke (n = 1). Serum cotinine concentration and serum renalase concentration were measured using ELISA tests. Serum renalase concentration was statistically significantly higher in subgroup C than in subgroups A and B and in subgroup E and F than in D. There was a negative correlation between serum cotinine concentration and serum renalase concentration (r = -0.41, p < 0.05). Regression analysis showed that higher BMI, higher diastolic blood pressure, coronary artery disease and higher serum cotinine concentration are independent risk factors of lower serum renalase concentration. The questionnaire method of assessing exposure to tobacco smoke was characterized by high sensitivity, but only moderate specificity, especially in terms of assessing environmental exposure to tobacco smoke. In summary, the study showed an independent relationship between exposure to tobacco smoke and lower serum renalase concentration.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09868-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to tobacco smoke (ETS) is one of the main risk factors for cardiovascular disease (CVD). Renalase is a protein that may play a role in the pathogenesis of CVD. The aim of the study was to assess the relationship between ETS and serum renalase concentration. A group of 109 patients was recruited for this study (49.7 ± 14.7 years). In accordance with the questionnaire, patients were divided into the following subgroups: subgroup A- declaring themselves active smokers (n = 36), subgroup B- declaring themselves non-smokers and exposed to environmental tobacco smoke (n = 35), subgroup C- declaring themselves non-smokers and not exposed to environmental tobacco smoke (n = 38). The same patients were divided based on cotinine concentration into the following subgroups: subgroup D- active smokers (n = 42), subgroup E- non-smokers exposed to environmental tobacco smoke (n = 66), and subgroup F- non-smokers not exposed to environmental tobacco smoke (n = 1). Serum cotinine concentration and serum renalase concentration were measured using ELISA tests. Serum renalase concentration was statistically significantly higher in subgroup C than in subgroups A and B and in subgroup E and F than in D. There was a negative correlation between serum cotinine concentration and serum renalase concentration (r = -0.41, p < 0.05). Regression analysis showed that higher BMI, higher diastolic blood pressure, coronary artery disease and higher serum cotinine concentration are independent risk factors of lower serum renalase concentration. The questionnaire method of assessing exposure to tobacco smoke was characterized by high sensitivity, but only moderate specificity, especially in terms of assessing environmental exposure to tobacco smoke. In summary, the study showed an independent relationship between exposure to tobacco smoke and lower serum renalase concentration.
期刊介绍:
Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.