Huaxuan Wu, Bingxi Gao, Rong Zhang, Zehang Huang, Zongjun Yin, Xiaoxiang Hu, Cai-Xia Yang, Zhi-Qiang Du
{"title":"Residual network improves the prediction accuracy of genomic selection","authors":"Huaxuan Wu, Bingxi Gao, Rong Zhang, Zehang Huang, Zongjun Yin, Xiaoxiang Hu, Cai-Xia Yang, Zhi-Qiang Du","doi":"10.1111/age.13445","DOIUrl":null,"url":null,"abstract":"<p>Genetic improvement of complex traits in animal and plant breeding depends on the efficient and accurate estimation of breeding values. Deep learning methods have been shown to be not superior over traditional genomic selection (GS) methods, partially due to the degradation problem (i.e. with the increase of the model depth, the performance of the deeper model deteriorates). Since the deep learning method residual network (ResNet) is designed to solve gradient degradation, we examined its performance and factors related to its prediction accuracy in GS. Here we compared the prediction accuracy of conventional genomic best linear unbiased prediction, Bayesian methods (BayesA, BayesB, BayesC, and Bayesian Lasso), and two deep learning methods, convolutional neural network and ResNet, on three datasets (wheat, simulated and real pig data). ResNet outperformed other methods in both Pearson's correlation coefficient (PCC) and mean squared error (MSE) on the wheat and simulated data. For the pig backfat depth trait, ResNet still had the lowest MSE, whereas Bayesian Lasso had the highest PCC. We further clustered the pig data into four groups and, on one separated group, ResNet had the highest prediction accuracy (both PCC and MSE). Transfer learning was adopted and capable of enhancing the performance of both convolutional neural network and ResNet. Taken together, our findings indicate that ResNet could improve GS prediction accuracy, affected potentially by factors such as the genetic architecture of complex traits, data volume, and heterogeneity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13445","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic improvement of complex traits in animal and plant breeding depends on the efficient and accurate estimation of breeding values. Deep learning methods have been shown to be not superior over traditional genomic selection (GS) methods, partially due to the degradation problem (i.e. with the increase of the model depth, the performance of the deeper model deteriorates). Since the deep learning method residual network (ResNet) is designed to solve gradient degradation, we examined its performance and factors related to its prediction accuracy in GS. Here we compared the prediction accuracy of conventional genomic best linear unbiased prediction, Bayesian methods (BayesA, BayesB, BayesC, and Bayesian Lasso), and two deep learning methods, convolutional neural network and ResNet, on three datasets (wheat, simulated and real pig data). ResNet outperformed other methods in both Pearson's correlation coefficient (PCC) and mean squared error (MSE) on the wheat and simulated data. For the pig backfat depth trait, ResNet still had the lowest MSE, whereas Bayesian Lasso had the highest PCC. We further clustered the pig data into four groups and, on one separated group, ResNet had the highest prediction accuracy (both PCC and MSE). Transfer learning was adopted and capable of enhancing the performance of both convolutional neural network and ResNet. Taken together, our findings indicate that ResNet could improve GS prediction accuracy, affected potentially by factors such as the genetic architecture of complex traits, data volume, and heterogeneity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.