SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2024-01-01 Epub Date: 2024-05-15 DOI:10.1080/10985549.2024.2348711
Sebastian Hendrix, Josephine M E Tan, Klevis Ndoj, Jenina Kingma, Masoud Valiloo, Lobke F Zijlstra, Roelof Ottenhoff, Nabil G Seidah, Anke Loregger, Daniel L Kober, Noam Zelcer
{"title":"SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P.","authors":"Sebastian Hendrix, Josephine M E Tan, Klevis Ndoj, Jenina Kingma, Masoud Valiloo, Lobke F Zijlstra, Roelof Ottenhoff, Nabil G Seidah, Anke Loregger, Daniel L Kober, Noam Zelcer","doi":"10.1080/10985549.2024.2348711","DOIUrl":null,"url":null,"abstract":"<p><p>SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1P<sub>A</sub> to mature S1P<sub>C</sub> form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1P<sub>A</sub> into its mature S1P<sub>C</sub> form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific <i>Spring</i> knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRING<sup>KO</sup> cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1P<sub>A→C</sub> and trafficking of S1P<sub>C</sub> to the Golgi. However, despite reaching the Golgi in SPRING<sup>KO</sup> cells, S1P<sub>C</sub> fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRING<sup>KO</sup> cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2024.2348711","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPRING 是 S1P 激活 SREBP 的专用许可因子。
SREBP 转录因子是脂质代谢的核心调节因子。它们的蛋白水解激活需要从 ER 转运到高尔基体,然后被位点-1 蛋白酶(S1P)裂解。S1P 作为一种前蛋白,从其前体 S1PA 经过自催化裂解为成熟的 S1PC 形式。在这里,我们报告了 SPRING(以前为 C12ORF29)和 S1P 通过其外显子相互作用,这促进了 S1PA 自动催化裂解为其成熟的 S1PC 形式。反过来,我们在 SPRING 中发现了一个 S1P 识别位点,并证明 S1P 介导的裂解会导致 SPRING 外结构域在细胞中以及在用 AAV-mSpring 转导的肝脏特异性 Spring 基因敲除(LKO)小鼠中分泌。通过将SPRING变体重组到SPRINGKO细胞中,我们发现SPRING外结构域支持S1P和SREBP信号的蛋白水解成熟,但S1P介导的SPRING裂解对这些过程并不重要。SPRING 的缺失会适度减少 S1PA→C 的蛋白水解成熟和 S1PC 向高尔基体的运输。然而,尽管SPRINGKO细胞中的S1PC到达了高尔基体,但却无法拯救SREBP信号传导。值得注意的是,在 SPRINGKO 细胞和 LKO 小鼠中,SREBP 信号转导严重减弱,而在这些模型中,另一种 S1P 底物 ATF6 的信号转导却不受影响。总之,我们的研究将 SPRING 定位为 S1P 激活 SREBP 特异性的专用许可因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
The Ashkenazi-Centric G334R Variant of TP53 is Severely Impaired for Transactivation but Retains Tumor Suppressor Function in a Mouse Model. A Genome Wide CRISPR Screen Reveals That HOXA9 Promotes Enzalutamide Resistance in Prostate Cancer. Midnolin, a Genetic Risk Factor for Parkinson’s Disease, Promotes Neurite Outgrowth Accompanied by Early Growth Response 1 Activation in PC12 Cells Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. ANP32e Binds Histone H2A.Z in a Cell Cycle-Dependent Manner and Regulates Its Protein Stability in the Cytoplasm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1