Automated optimization of the solubility of a hyper-stable α-amylase.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Open Biology Pub Date : 2024-05-01 Epub Date: 2024-05-15 DOI:10.1098/rsob.240014
Montader Ali, Matthew Greenig, Marc Oeller, Misha Atkinson, Xing Xu, Pietro Sormanni
{"title":"Automated optimization of the solubility of a hyper-stable α-amylase.","authors":"Montader Ali, Matthew Greenig, Marc Oeller, Misha Atkinson, Xing Xu, Pietro Sormanni","doi":"10.1098/rsob.240014","DOIUrl":null,"url":null,"abstract":"<p><p>Most successes in computational protein engineering to date have focused on enhancing one biophysical trait, while multi-trait optimization remains a challenge. Different biophysical properties are often conflicting, as mutations that improve one tend to worsen the others. In this study, we explored the potential of an automated computational design strategy, called CamSol Combination, to optimize solubility and stability of enzymes without affecting their activity. Specifically, we focus on <i>Bacillus licheniformis</i> α-amylase (BLA), a hyper-stable enzyme that finds diverse application in industry and biotechnology. We validate the computational predictions by producing 10 BLA variants, including the wild-type (WT) and three designed models harbouring between 6 and 8 mutations each. Our results show that all three models have substantially improved relative solubility over the WT, unaffected catalytic rate and retained hyper-stability, supporting the algorithm's capacity to optimize enzymes. High stability and solubility embody enzymes with superior resilience to chemical and physical stresses, enhance manufacturability and allow for high-concentration formulations characterized by extended shelf lives. This ability to readily optimize solubility and stability of enzymes will enable the rapid and reliable generation of highly robust and versatile reagents, poised to contribute to advancements in diverse scientific and industrial domains.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 5","pages":"240014"},"PeriodicalIF":4.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most successes in computational protein engineering to date have focused on enhancing one biophysical trait, while multi-trait optimization remains a challenge. Different biophysical properties are often conflicting, as mutations that improve one tend to worsen the others. In this study, we explored the potential of an automated computational design strategy, called CamSol Combination, to optimize solubility and stability of enzymes without affecting their activity. Specifically, we focus on Bacillus licheniformis α-amylase (BLA), a hyper-stable enzyme that finds diverse application in industry and biotechnology. We validate the computational predictions by producing 10 BLA variants, including the wild-type (WT) and three designed models harbouring between 6 and 8 mutations each. Our results show that all three models have substantially improved relative solubility over the WT, unaffected catalytic rate and retained hyper-stability, supporting the algorithm's capacity to optimize enzymes. High stability and solubility embody enzymes with superior resilience to chemical and physical stresses, enhance manufacturability and allow for high-concentration formulations characterized by extended shelf lives. This ability to readily optimize solubility and stability of enzymes will enable the rapid and reliable generation of highly robust and versatile reagents, poised to contribute to advancements in diverse scientific and industrial domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动优化超稳定α-淀粉酶的溶解度。
迄今为止,计算蛋白质工程的大多数成功案例都集中在提高一种生物物理特性上,而多特性优化仍然是一项挑战。不同的生物物理特性往往相互冲突,因为改善一种特性的突变往往会恶化其他特性。在这项研究中,我们探索了一种名为 "CamSol Combination "的自动计算设计策略的潜力,以在不影响酶活性的情况下优化酶的溶解度和稳定性。我们特别关注地衣芽孢杆菌α-淀粉酶(BLA),这是一种超稳定酶,在工业和生物技术领域有多种应用。我们通过产生 10 个 BLA 变体来验证计算预测,其中包括野生型(WT)和三个设计模型,每个模型含有 6 到 8 个突变。我们的结果表明,与 WT 相比,所有三种模型的相对溶解度都有大幅提高,催化速率未受影响,并保持了超稳定性,从而支持了该算法优化酶的能力。高稳定性和高溶解度体现了酶对化学和物理应力的超强适应能力,提高了可制造性,并使高浓度配方具有延长保质期的特点。这种随时优化酶的溶解度和稳定性的能力将有助于快速、可靠地生成高度稳健、用途广泛的试剂,为推动不同科学和工业领域的发展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
期刊最新文献
Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. SID-2 is a conserved extracellular vesicle protein that is not associated with environmental RNAi in parasitic nematodes. Mathematical model of RNA-directed DNA methylation predicts tuning of negative feedback required for stable maintenance. Learning-induced remodelling of inhibitory synapses in the motor cortex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1