A multidimensional dataset for structure-based machine learning

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-05-14 DOI:10.1038/s43588-024-00631-6
Matthew Holcomb, Stefano Forli
{"title":"A multidimensional dataset for structure-based machine learning","authors":"Matthew Holcomb, Stefano Forli","doi":"10.1038/s43588-024-00631-6","DOIUrl":null,"url":null,"abstract":"MISATO, a dataset for structure-based drug discovery combines quantum mechanics property data and molecular dynamics simulations on ~20,000 protein–ligand structures, substantially extends the amount of data available to the community and holds potential for advancing work in drug discovery.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 5","pages":"318-319"},"PeriodicalIF":12.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00631-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

MISATO, a dataset for structure-based drug discovery combines quantum mechanics property data and molecular dynamics simulations on ~20,000 protein–ligand structures, substantially extends the amount of data available to the community and holds potential for advancing work in drug discovery.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的机器学习多维数据集。
MISATO 是一个用于基于结构的药物发现的数据集,它结合了约 20,000 种蛋白质配体结构的量子力学特性数据和分子动力学模拟,大大扩展了社区可用的数据量,并具有推进药物发现工作的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Collective deliberation driven by AI. Harnessing deep learning to build optimized ligands. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Enhancing protein stability prediction with geometric learning and pre-training strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1