Jianhua Dai , Zhilin Zhu , Min Li , Xiongtao Zou , Chucai Zhang
{"title":"Attribute reduction for heterogeneous data based on monotonic relative neighborhood granularity","authors":"Jianhua Dai , Zhilin Zhu , Min Li , Xiongtao Zou , Chucai Zhang","doi":"10.1016/j.ijar.2024.109210","DOIUrl":null,"url":null,"abstract":"<div><p>The neighborhood rough set model serves as an important tool for handling attribute reduction tasks involving heterogeneous attributes. However, measuring the relationship between conditional attributes and decision in the neighborhood rough set model is a crucial issue. Most studies have utilized neighborhood information entropy to measure the relationship between attributes. When using neighborhood conditional information entropy to measure the relationships between the decision and conditional attributes, it lacks monotonicity, consequently affecting the rationality of the final attribute reduction subset. In this paper, we introduce the concept of neighborhood granularity and propose a new form of relative neighborhood granularity to measure the relationship between the decision and conditional attributes, which exhibits monotonicity. Moreover, our approach for measuring neighborhood granularity avoids the logarithmic function computation involved in neighborhood information entropy. Finally, we conduct comparative experiments on 12 datasets using two classifiers to compare the results of attribute reduction with six other attribute reduction algorithms. The comparison demonstrates the advantages of our measurement approach.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"170 ","pages":"Article 109210"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000975","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The neighborhood rough set model serves as an important tool for handling attribute reduction tasks involving heterogeneous attributes. However, measuring the relationship between conditional attributes and decision in the neighborhood rough set model is a crucial issue. Most studies have utilized neighborhood information entropy to measure the relationship between attributes. When using neighborhood conditional information entropy to measure the relationships between the decision and conditional attributes, it lacks monotonicity, consequently affecting the rationality of the final attribute reduction subset. In this paper, we introduce the concept of neighborhood granularity and propose a new form of relative neighborhood granularity to measure the relationship between the decision and conditional attributes, which exhibits monotonicity. Moreover, our approach for measuring neighborhood granularity avoids the logarithmic function computation involved in neighborhood information entropy. Finally, we conduct comparative experiments on 12 datasets using two classifiers to compare the results of attribute reduction with six other attribute reduction algorithms. The comparison demonstrates the advantages of our measurement approach.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.