Iterative Sketching for Secure Coded Regression

Neophytos Charalambides;Hessam Mahdavifar;Mert Pilanci;Alfred O. Hero
{"title":"Iterative Sketching for Secure Coded Regression","authors":"Neophytos Charalambides;Hessam Mahdavifar;Mert Pilanci;Alfred O. Hero","doi":"10.1109/JSAIT.2024.3384395","DOIUrl":null,"url":null,"abstract":"Linear regression is a fundamental and primitive problem in supervised machine learning, with applications ranging from epidemiology to finance. In this work, we propose methods for speeding up distributed linear regression. We do so by leveraging randomized techniques, while also ensuring security and straggler resiliency in asynchronous distributed computing systems. Specifically, we randomly rotate the basis of the system of equations and then subsample \n<italic>blocks</i>\n, to simultaneously secure the information and reduce the dimension of the regression problem. In our setup, the basis rotation corresponds to an encoded encryption in an \n<italic>approximate gradient coding scheme</i>\n, and the subsampling corresponds to the responses of the non-straggling servers in the centralized coded computing framework. This results in a distributive \n<italic>iterative</i>\n stochastic approach for matrix compression and steepest descent.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"148-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10491592/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linear regression is a fundamental and primitive problem in supervised machine learning, with applications ranging from epidemiology to finance. In this work, we propose methods for speeding up distributed linear regression. We do so by leveraging randomized techniques, while also ensuring security and straggler resiliency in asynchronous distributed computing systems. Specifically, we randomly rotate the basis of the system of equations and then subsample blocks , to simultaneously secure the information and reduce the dimension of the regression problem. In our setup, the basis rotation corresponds to an encoded encryption in an approximate gradient coding scheme , and the subsampling corresponds to the responses of the non-straggling servers in the centralized coded computing framework. This results in a distributive iterative stochastic approach for matrix compression and steepest descent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全编码回归的迭代草图绘制
线性回归是有监督机器学习中最基本、最原始的问题,应用范围从流行病学到金融学。在这项工作中,我们提出了加速分布式线性回归的方法。我们利用随机化技术实现了这一目标,同时还确保了异步分布式计算系统的安全性和流浪者恢复能力。具体来说,我们随机旋转方程组的基础,然后对区块进行子采样,从而同时确保信息安全并降低回归问题的维度。在我们的设置中,基础旋转对应于近似梯度编码方案中的编码加密,而子采样对应于集中编码计算框架中不串行服务器的响应。这就产生了一种用于矩阵压缩和最陡下降的分布式迭代随机方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1