A Nonparametric Composite Group DIF Index for Focal Groups Stemming from Multicategorical Variables

IF 1.4 4区 心理学 Q3 PSYCHOLOGY, APPLIED Journal of Educational Measurement Pub Date : 2024-05-12 DOI:10.1111/jedm.12394
Corinne Huggins-Manley, Anthony W. Raborn, Peggy K. Jones, Ted Myers
{"title":"A Nonparametric Composite Group DIF Index for Focal Groups Stemming from Multicategorical Variables","authors":"Corinne Huggins-Manley,&nbsp;Anthony W. Raborn,&nbsp;Peggy K. Jones,&nbsp;Ted Myers","doi":"10.1111/jedm.12394","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study is to develop a nonparametric DIF method that (a) compares focal groups directly to the composite group that will be used to develop the reported test score scale, and (b) allows practitioners to explore for DIF related to focal groups stemming from multicategorical variables that constitute a small proportion of the overall testing population. We propose the nonparametric root expected proportion squared difference (<i>REPSD</i>) index that evaluates the statistical significance of composite group DIF for relatively small focal groups stemming from multicategorical focal variables, with decisions of statistical significance based on quasi-exact <i>p</i> values obtained from Monte Carlo permutations of the DIF statistic under the null distribution. We conduct a simulation to evaluate conditions under which the index produces acceptable Type I error and power rates, as well as an application to a school district assessment. Practitioners can calculate the <i>REPSD</i> index in a freely available package we created in the R environment.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"61 3","pages":"432-457"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12394","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to develop a nonparametric DIF method that (a) compares focal groups directly to the composite group that will be used to develop the reported test score scale, and (b) allows practitioners to explore for DIF related to focal groups stemming from multicategorical variables that constitute a small proportion of the overall testing population. We propose the nonparametric root expected proportion squared difference (REPSD) index that evaluates the statistical significance of composite group DIF for relatively small focal groups stemming from multicategorical focal variables, with decisions of statistical significance based on quasi-exact p values obtained from Monte Carlo permutations of the DIF statistic under the null distribution. We conduct a simulation to evaluate conditions under which the index produces acceptable Type I error and power rates, as well as an application to a school district assessment. Practitioners can calculate the REPSD index in a freely available package we created in the R environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多分类变量焦点组的非参数综合组 DIF 指数
本研究的目的是开发一种非参数 DIF 方法,该方法(a)可将焦点组直接与将用于开发报告测试得分量表的综合组进行比较,(b)允许从业人员探索与源自多类别变量的焦点组相关的 DIF,这些焦点组在整个测试人群中只占很小的比例。我们提出了非参数根期望比例平方差(REPSD)指数,该指数可评估源自多类别焦点变量的相对较小焦点组的复合组 DIF 的统计显著性,统计显著性的判定依据的是在零分布下对 DIF 统计量进行蒙特卡罗排列所获得的准精确 p 值。我们进行了一次模拟,以评估该指数在哪些条件下可产生可接受的 I 类错误和幂率,并将其应用于学区评估。实践者可以通过我们在 R 环境中创建的免费软件包计算 REPSD 指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
46
期刊介绍: The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.
期刊最新文献
Sequential Reservoir Computing for Log File‐Based Behavior Process Data Analyses Issue Information Exploring Latent Constructs through Multimodal Data Analysis Robustness of Item Response Theory Models under the PISA Multistage Adaptive Testing Designs Modeling Nonlinear Effects of Person‐by‐Item Covariates in Explanatory Item Response Models: Exploratory Plots and Modeling Using Smooth Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1