{"title":"Features of Decomposition and the Mechanical Properties of an Aging Shape Memory Ti49Ni51 Alloy Subjected to Heat Treatment","authors":"N. N. Kuranova, V. V. Makarov, V. G. Pushin","doi":"10.1134/s0031918x23602809","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Features of the microstructure of the shape-memory Ti–51 at %Ni alloy subjected to aging at different temperatures are studied. Along with metallographic analysis performed by optical and electron microscopy and X-ray diffraction analysis, room-temperature tensile tests of the mechanical properties are performed. The alloy in the aged state is found to be characterized by the high level of mechanical properties (the ultimate strength is up to 1200 MPa and the relative elongation, 35%) owing to the highly dispersed homogeneous decomposition and the simultaneous strengthening and increase in the plasticity as a result of strain-induced martensitic transformation.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x23602809","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Features of the microstructure of the shape-memory Ti–51 at %Ni alloy subjected to aging at different temperatures are studied. Along with metallographic analysis performed by optical and electron microscopy and X-ray diffraction analysis, room-temperature tensile tests of the mechanical properties are performed. The alloy in the aged state is found to be characterized by the high level of mechanical properties (the ultimate strength is up to 1200 MPa and the relative elongation, 35%) owing to the highly dispersed homogeneous decomposition and the simultaneous strengthening and increase in the plasticity as a result of strain-induced martensitic transformation.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.