Multi-exit self-distillation with appropriate teachers

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-05-10 DOI:10.1631/fitee.2200644
Wujie Sun, Defang Chen, Can Wang, Deshi Ye, Yan Feng, Chun Chen
{"title":"Multi-exit self-distillation with appropriate teachers","authors":"Wujie Sun, Defang Chen, Can Wang, Deshi Ye, Yan Feng, Chun Chen","doi":"10.1631/fitee.2200644","DOIUrl":null,"url":null,"abstract":"<p>Multi-exit architecture allows early-stop inference to reduce computational cost, which can be used in resource-constrained circumstances. Recent works combine the multi-exit architecture with self-distillation to simultaneously achieve high efficiency and decent performance at different network depths. However, existing methods mainly transfer knowledge from deep exits or a single ensemble to guide all exits, without considering that inappropriate learning gaps between students and teachers may degrade the model performance, especially in shallow exits. To address this issue, we propose Multi-exit self-distillation with Appropriate TEachers (MATE) to provide diverse and appropriate teacher knowledge for each exit. In MATE, multiple ensemble teachers are obtained from all exits with different trainable weights. Each exit subsequently receives knowledge from all teachers, while focusing mainly on its primary teacher to keep an appropriate gap for efficient knowledge transfer. In this way, MATE achieves diversity in knowledge distillation while ensuring learning efficiency. Experimental results on CIFAR-100, TinyImageNet, and three fine-grained datasets demonstrate that MATE consistently outperforms state-of-the-art multi-exit self-distillation methods with various network architectures.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200644","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-exit architecture allows early-stop inference to reduce computational cost, which can be used in resource-constrained circumstances. Recent works combine the multi-exit architecture with self-distillation to simultaneously achieve high efficiency and decent performance at different network depths. However, existing methods mainly transfer knowledge from deep exits or a single ensemble to guide all exits, without considering that inappropriate learning gaps between students and teachers may degrade the model performance, especially in shallow exits. To address this issue, we propose Multi-exit self-distillation with Appropriate TEachers (MATE) to provide diverse and appropriate teacher knowledge for each exit. In MATE, multiple ensemble teachers are obtained from all exits with different trainable weights. Each exit subsequently receives knowledge from all teachers, while focusing mainly on its primary teacher to keep an appropriate gap for efficient knowledge transfer. In this way, MATE achieves diversity in knowledge distillation while ensuring learning efficiency. Experimental results on CIFAR-100, TinyImageNet, and three fine-grained datasets demonstrate that MATE consistently outperforms state-of-the-art multi-exit self-distillation methods with various network architectures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与合适的教师进行多出口自馏
多退出架构允许提前停止推理以降低计算成本,可用于资源受限的情况。最近的研究将多出口架构与自蒸馏相结合,在不同的网络深度同时实现了高效率和良好的性能。然而,现有方法主要是从深度出口或单一集合中转移知识来指导所有出口,而没有考虑到师生之间不适当的学习差距可能会降低模型性能,尤其是在浅出口中。为了解决这个问题,我们提出了 "多出口自发散与适当的教师"(MATE),为每个出口提供多样化和适当的教师知识。在 MATE 中,从所有出口获得多个具有不同可训练权重的合奏教师。随后,每个出口接收来自所有教师的知识,同时主要关注其主要教师,以保持适当的差距,从而实现高效的知识转移。这样,MATE 在确保学习效率的同时,实现了知识提炼的多样性。在 CIFAR-100、TinyImageNet 和三个细粒度数据集上的实验结果表明,MATE 始终优于采用各种网络架构的最先进的多出口自蒸馏方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1