Modelling the Response of Timber Beams Under Fire

IF 1.8 4区 工程技术 Q3 ENGINEERING, CIVIL International Journal of Civil Engineering Pub Date : 2024-05-13 DOI:10.1007/s40999-024-00973-2
Mourad Khelifa, Van Diem Thi, Marc Oudjène, Amar Khennane, Mohammed El Ganaoui, Yann Rogaume
{"title":"Modelling the Response of Timber Beams Under Fire","authors":"Mourad Khelifa, Van Diem Thi, Marc Oudjène, Amar Khennane, Mohammed El Ganaoui, Yann Rogaume","doi":"10.1007/s40999-024-00973-2","DOIUrl":null,"url":null,"abstract":"<p>A fundamental requirement for analysing timber structures under fire is to consider the degradation of material properties with temperature. Therefore, the objective of this study is to propose a model that accounts for the variation of the thermo-physical properties, the development of char, and its evolution with temperature. This model integrates a sequential coupling of heat transfer analysis with structural response. The degradation of the material properties is accounted for through the regulatory approach recommended in Eurocode 5. The stress analysis employs an elasto-plastic model with nonlinear isotropic hardening. Implementation of the model is achieved within the Abaqus suite of finite element software using external subroutines. The model's predictions align well with experimental data, accurately reproducing both thermal and structural responses. Specifically, the model accurately predicts temperature profiles, displacements, and the depth of the charred layer, which initiates above 300 °C. Additionally, for rectangular sections, it was observed that exposure of all faces to fire results in a non-rectangular residual section. Furthermore, employing the temperature-dependent thermal property curves suggested by EC5 yields satisfactory results when predicting the fire resistance of softwood timber structures.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00973-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental requirement for analysing timber structures under fire is to consider the degradation of material properties with temperature. Therefore, the objective of this study is to propose a model that accounts for the variation of the thermo-physical properties, the development of char, and its evolution with temperature. This model integrates a sequential coupling of heat transfer analysis with structural response. The degradation of the material properties is accounted for through the regulatory approach recommended in Eurocode 5. The stress analysis employs an elasto-plastic model with nonlinear isotropic hardening. Implementation of the model is achieved within the Abaqus suite of finite element software using external subroutines. The model's predictions align well with experimental data, accurately reproducing both thermal and structural responses. Specifically, the model accurately predicts temperature profiles, displacements, and the depth of the charred layer, which initiates above 300 °C. Additionally, for rectangular sections, it was observed that exposure of all faces to fire results in a non-rectangular residual section. Furthermore, employing the temperature-dependent thermal property curves suggested by EC5 yields satisfactory results when predicting the fire resistance of softwood timber structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟木梁在火灾下的反应
分析火灾下的木结构的一个基本要求是考虑材料特性随温度的变化而退化。因此,本研究的目的是提出一个模型,以说明热物理性质的变化、炭化的发展及其随温度的变化。该模型整合了传热分析与结构响应的顺序耦合。材料性能的退化是通过欧洲规范 5 中推荐的调节方法来考虑的。应力分析采用了具有非线性各向同性硬化的弹塑性模型。该模型通过外部子程序在 Abaqus 有限元软件套件中实现。该模型的预测结果与实验数据十分吻合,准确地再现了热响应和结构响应。具体来说,该模型准确预测了温度曲线、位移和炭化层深度,炭化层始于 300 °C 以上。此外,对于矩形截面,可以观察到将所有面暴露于火中会产生非矩形残余截面。此外,在预测软木木材结构的耐火性时,采用 EC5 建议的随温度变化的热性能曲线可获得令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
5.90%
发文量
83
审稿时长
15 months
期刊介绍: International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.
期刊最新文献
Experimental and Analytical Study of Tensile and Bond Performances of Glass Fabric Reinforced Cementitious Matrix for Retrofit Applications on Concrete Surfaces Boundary Effects for ESB Container in Dynamic Centrifuge Test Incorporating Numerical Simulation Modeling Disruption in the Rail-Road Network and Identifying Critical Terminals Mechanical Behaviors of Steel Segment Support Structures for TBM-Excavated Coal Mine Tunnels: Experimental and Numerical Study Numerical Investigation on the Efficiency of Self-Centering Two-Yield Buckling Restrained Brace on Low-Rise Steel Frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1