Mourad Khelifa, Van Diem Thi, Marc Oudjène, Amar Khennane, Mohammed El Ganaoui, Yann Rogaume
{"title":"Modelling the Response of Timber Beams Under Fire","authors":"Mourad Khelifa, Van Diem Thi, Marc Oudjène, Amar Khennane, Mohammed El Ganaoui, Yann Rogaume","doi":"10.1007/s40999-024-00973-2","DOIUrl":null,"url":null,"abstract":"<p>A fundamental requirement for analysing timber structures under fire is to consider the degradation of material properties with temperature. Therefore, the objective of this study is to propose a model that accounts for the variation of the thermo-physical properties, the development of char, and its evolution with temperature. This model integrates a sequential coupling of heat transfer analysis with structural response. The degradation of the material properties is accounted for through the regulatory approach recommended in Eurocode 5. The stress analysis employs an elasto-plastic model with nonlinear isotropic hardening. Implementation of the model is achieved within the Abaqus suite of finite element software using external subroutines. The model's predictions align well with experimental data, accurately reproducing both thermal and structural responses. Specifically, the model accurately predicts temperature profiles, displacements, and the depth of the charred layer, which initiates above 300 °C. Additionally, for rectangular sections, it was observed that exposure of all faces to fire results in a non-rectangular residual section. Furthermore, employing the temperature-dependent thermal property curves suggested by EC5 yields satisfactory results when predicting the fire resistance of softwood timber structures.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00973-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A fundamental requirement for analysing timber structures under fire is to consider the degradation of material properties with temperature. Therefore, the objective of this study is to propose a model that accounts for the variation of the thermo-physical properties, the development of char, and its evolution with temperature. This model integrates a sequential coupling of heat transfer analysis with structural response. The degradation of the material properties is accounted for through the regulatory approach recommended in Eurocode 5. The stress analysis employs an elasto-plastic model with nonlinear isotropic hardening. Implementation of the model is achieved within the Abaqus suite of finite element software using external subroutines. The model's predictions align well with experimental data, accurately reproducing both thermal and structural responses. Specifically, the model accurately predicts temperature profiles, displacements, and the depth of the charred layer, which initiates above 300 °C. Additionally, for rectangular sections, it was observed that exposure of all faces to fire results in a non-rectangular residual section. Furthermore, employing the temperature-dependent thermal property curves suggested by EC5 yields satisfactory results when predicting the fire resistance of softwood timber structures.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.