Factor Model Comparisons with Conditioning Information

IF 3.9 2区 经济学 Q1 Economics, Econometrics and Finance Journal of Financial and Quantitative Analysis Pub Date : 2024-01-29 DOI:10.1017/s002210902400005x
Wayne E. Ferson, Andrew F. Siegel, Junbo L. Wang
{"title":"Factor Model Comparisons with Conditioning Information","authors":"Wayne E. Ferson, Andrew F. Siegel, Junbo L. Wang","doi":"10.1017/s002210902400005x","DOIUrl":null,"url":null,"abstract":"<p>We develop methods for testing factor models when the weights in portfolios of factors and test assets can vary with lagged information. We derive and evaluate consistent standard errors and finite sample bias adjustments for unconditional maximum squared Sharpe ratios and their differences. Bias adjustment using a second-order approximation performs well. We derive optimal zero-beta rates for models with dynamically trading portfolios. Factor models’ Sharpe ratios are larger but standard test asset portfolios’ maximum Sharpe ratios are larger still when there is dynamic trading. As a result, most of the popular factor models are rejected.</p>","PeriodicalId":48380,"journal":{"name":"Journal of Financial and Quantitative Analysis","volume":"39 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial and Quantitative Analysis","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s002210902400005x","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

We develop methods for testing factor models when the weights in portfolios of factors and test assets can vary with lagged information. We derive and evaluate consistent standard errors and finite sample bias adjustments for unconditional maximum squared Sharpe ratios and their differences. Bias adjustment using a second-order approximation performs well. We derive optimal zero-beta rates for models with dynamically trading portfolios. Factor models’ Sharpe ratios are larger but standard test asset portfolios’ maximum Sharpe ratios are larger still when there is dynamic trading. As a result, most of the popular factor models are rejected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
因子模型与条件信息的比较
当因子组合和测试资产的权重可能随滞后信息而变化时,我们开发了测试因子模型的方法。我们推导并评估了无条件最大夏普比率及其差值的一致标准误差和有限样本偏差调整。使用二阶近似进行偏差调整的效果很好。我们推导出动态交易投资组合模型的最优零贝塔率。当存在动态交易时,因子模型的夏普比率较大,但标准测试资产组合的最大夏普比率仍然较大。因此,大多数流行的因子模型都被否定了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
5.10%
发文量
131
期刊介绍: The Journal of Financial and Quantitative Analysis (JFQA) publishes theoretical and empirical research in financial economics. Topics include corporate finance, investments, capital and security markets, and quantitative methods of particular relevance to financial researchers. With a circulation of 3000 libraries, firms, and individuals in 70 nations, the JFQA serves an international community of sophisticated finance scholars—academics and practitioners alike. The JFQA prints less than 10% of the more than 600 unsolicited manuscripts submitted annually. An intensive blind review process and exacting editorial standards contribute to the JFQA’s reputation as a top finance journal.
期刊最新文献
Protecting Your Friends: The Role of Connections in Division Manager Careers Variance Decomposition and Cryptocurrency Return Prediction On the Capital Market Consequences of Big Data: Evidence from Outer Space Consumption Growth Persistence and the Stock–Bond Correlation Evolution of Debt Financing Toward Less-Regulated Financial Intermediaries in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1