William A. Ingram, Jian Wu, Sampanna Yashwant Kahu, Javaid Akbar Manzoor, Bipasha Banerjee, Aman Ahuja, Muntabir Hasan Choudhury, Lamia Salsabil, Winston Shields, Edward A. Fox
{"title":"Building datasets to support information extraction and structure parsing from electronic theses and dissertations","authors":"William A. Ingram, Jian Wu, Sampanna Yashwant Kahu, Javaid Akbar Manzoor, Bipasha Banerjee, Aman Ahuja, Muntabir Hasan Choudhury, Lamia Salsabil, Winston Shields, Edward A. Fox","doi":"10.1007/s00799-024-00395-4","DOIUrl":null,"url":null,"abstract":"<p>Despite the millions of electronic theses and dissertations (ETDs) publicly available online, digital library services for ETDs have not evolved past simple search and browse at the metadata level. We need better digital library services that allow users to discover and explore the content buried in these long documents. Recent advances in machine learning have shown promising results for decomposing documents into their constituent parts, but these models and techniques require data for training and evaluation. In this article, we present high-quality datasets to train, evaluate, and compare machine learning methods in tasks that are specifically suited to identify and extract key elements of ETD documents. We explain how we construct the datasets by manual labeling the data or by deriving labeled data through synthetic processes. We demonstrate how our datasets can be used to develop downstream applications and to evaluate, retrain, or fine-tune pre-trained machine learning models. We describe our ongoing work to compile benchmark datasets and exploit machine learning techniques to build intelligent digital libraries for ETDs.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-024-00395-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the millions of electronic theses and dissertations (ETDs) publicly available online, digital library services for ETDs have not evolved past simple search and browse at the metadata level. We need better digital library services that allow users to discover and explore the content buried in these long documents. Recent advances in machine learning have shown promising results for decomposing documents into their constituent parts, but these models and techniques require data for training and evaluation. In this article, we present high-quality datasets to train, evaluate, and compare machine learning methods in tasks that are specifically suited to identify and extract key elements of ETD documents. We explain how we construct the datasets by manual labeling the data or by deriving labeled data through synthetic processes. We demonstrate how our datasets can be used to develop downstream applications and to evaluate, retrain, or fine-tune pre-trained machine learning models. We describe our ongoing work to compile benchmark datasets and exploit machine learning techniques to build intelligent digital libraries for ETDs.
期刊介绍:
The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies