Chao Jiang, Christopher A. Bareither, Paul R. Heyliger
{"title":"Confined binary particle mixing with a modified discrete element method","authors":"Chao Jiang, Christopher A. Bareither, Paul R. Heyliger","doi":"10.1007/s40571-024-00767-2","DOIUrl":null,"url":null,"abstract":"<div><p>A modified version of a nonlinear viscoelastic damping model is presented to better represent overall spherical particle response using the discrete element method (DEM) to simulate gravity-driven mixing of binary particles into a confined box. Nonlinear springs are used in the normal and tangential directions to simulate the contact forces, and an additional nonlinear annular spring is employed at the contact points to account for rolling friction. A viscous damping term related to the relative motion between contacting particles is applied to represent energy dissipation, and an alternative condition for checking the end of a collision is applied. The new model is shown to successfully recover the tangential force behavior in stick and sliding regions without having to introduce more complicated behavior. Results are in excellent agreement with existing benchmark tests, and the model is applied to evaluating several different mixing schemes using fixed geometric particle flow disruptors with sometimes surprising results.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"2105 - 2125"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00767-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A modified version of a nonlinear viscoelastic damping model is presented to better represent overall spherical particle response using the discrete element method (DEM) to simulate gravity-driven mixing of binary particles into a confined box. Nonlinear springs are used in the normal and tangential directions to simulate the contact forces, and an additional nonlinear annular spring is employed at the contact points to account for rolling friction. A viscous damping term related to the relative motion between contacting particles is applied to represent energy dissipation, and an alternative condition for checking the end of a collision is applied. The new model is shown to successfully recover the tangential force behavior in stick and sliding regions without having to introduce more complicated behavior. Results are in excellent agreement with existing benchmark tests, and the model is applied to evaluating several different mixing schemes using fixed geometric particle flow disruptors with sometimes surprising results.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.