{"title":"Further prediction on the possible double-peak structure of the X17 particle","authors":"Hua-Xing Chen","doi":"10.1142/s0217732324500573","DOIUrl":null,"url":null,"abstract":"<p>The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> particle, discovered by [A. J. Krasznahorkay <i>et al.</i>, <i>Phys. Rev. Lett.</i><b>116</b>, 042501 (2016), doi:10.1103/PhysRevLett.116.042501] at ATOMKI, was recently confirmed in the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mi>γ</mi></math></span><span></span> invariant mass spectra by [K. U. Abraamyan, C. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov and A. S. Sorin, arXiv:2311.18632] at JINR. We notice with surprise and interest that the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> seems to have a double-peak structure. This is in a possible coincidence with our QCD sum rule study of [H.-X. Chen, arXiv:2006.01018], where we interpreted the <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi><mn>1</mn><mn>7</mn></math></span><span></span> as a tetraquark state composed of four bare quarks (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi><mi>ū</mi><mi>d</mi><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></math></span><span></span>), and claimed that “A unique feature of this tetraquark assignment is that we predict two almost degenerate states with significantly different widths”. These two different tetraquark states are described by two different chiral tetraquark currents <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. To verify whether the tetraquark assignment is correct or not, we replace the up and down quarks by the strange quarks, and apply the QCD sum rule method to study the other four chiral tetraquark currents <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ū</mi></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>L</mi></mrow></msub><msub><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mi>L</mi></mrow></msub><mspace width=\"0.35em\"></mspace><msub><mrow><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>γ</mi></mrow><mrow><mi>μ</mi></mrow></msup><msub><mrow><mi>d</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span><span></span>. We calculate their correlation functions, and find that non-perturbative QCD effects do not contribute much to them. Our results suggest that there may exist four almost degenerate tetraquark states with masses about <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>3</mn><mn>6</mn><mo>∼</mo><mn>2</mn><mn>9</mn><mn>6</mn></math></span><span></span> MeV. Each of these states is composed of four bare quarks, either <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi><mi>ū</mi><mi>s</mi><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span> or <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mover accent=\"true\"><mrow><mi>d</mi></mrow><mo>̄</mo></mover><mi>s</mi><mover accent=\"true\"><mrow><mi>s</mi></mrow><mo>̄</mo></mover></math></span><span></span>.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217732324500573","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The particle, discovered by [A. J. Krasznahorkay et al., Phys. Rev. Lett.116, 042501 (2016), doi:10.1103/PhysRevLett.116.042501] at ATOMKI, was recently confirmed in the invariant mass spectra by [K. U. Abraamyan, C. Austin, M. I. Baznat, K. K. Gudima, M. A. Kozhin, S. G. Reznikov and A. S. Sorin, arXiv:2311.18632] at JINR. We notice with surprise and interest that the seems to have a double-peak structure. This is in a possible coincidence with our QCD sum rule study of [H.-X. Chen, arXiv:2006.01018], where we interpreted the as a tetraquark state composed of four bare quarks (), and claimed that “A unique feature of this tetraquark assignment is that we predict two almost degenerate states with significantly different widths”. These two different tetraquark states are described by two different chiral tetraquark currents and . To verify whether the tetraquark assignment is correct or not, we replace the up and down quarks by the strange quarks, and apply the QCD sum rule method to study the other four chiral tetraquark currents , , and . We calculate their correlation functions, and find that non-perturbative QCD effects do not contribute much to them. Our results suggest that there may exist four almost degenerate tetraquark states with masses about MeV. Each of these states is composed of four bare quarks, either or .
由[A. J. Krasznahorkay 等人,Phys.J. Krasznahorkay 等人,Phys. Rev. Lett.116,042501 (2016),doi:10.1103/PhysRevLett.116.042501] 在 ATOMKI 发现的 X17 粒子,最近被 [K. U. Abraamyan、C. Austin、M. I. Baznat、K. K. Gudima、M. A. Kozhin、S. G. G. Baznat、K.U. Abraamyan、C. Austin、M. I. Baznat、K. K. Gudima、M. A. Kozhin、S. G. Reznikov 和 A. S. Sorin, arXiv:2311.18632]在日本核研院证实。我们惊讶并感兴趣地注意到,X17 似乎具有双峰结构。这可能与我们的 QCD 和则研究[H.-X. Chen, arXiv:2006.01018]不谋而合,当时我们把 X17 解释为由四个裸夸克(uūd̄)组成的四夸克态,并声称 "这种四夸克赋值的一个独特特征是,我们预测了两个宽度明显不同的几乎退化的态"。这两种不同的四夸克态由两种不同的手性四夸克电流 ūLγμdLd̄LγμuL 和 ūLγμdLd̄RγμuR 描述。为了验证四夸克的赋值是否正确,我们用奇异夸克来代替上夸克和下夸克、并应用 QCD 和则方法研究另外四种手性四夸克电流 ūLγμsLs̄LγμuL、ūLγμsLs̄RγμuR、d̄LγμsLs̄LγμdL 和 d̄LγμsLs̄RγμdR。我们计算了它们的相关函数,发现非微扰 QCD 效应对它们的贡献不大。我们的结果表明,可能存在质量约为236∼296MeV的四个几乎退化的四夸克态。每个态都由四个裸夸克(uūss̄或 dd̄ss̄)组成。
期刊介绍:
This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.