Neeru Sharma, Ashlesha P. Kawale, Arti Srivastava, Priyanka Chawla, Shivansh Tripathi, Mridula Tripathi
{"title":"Carboxymethyl Cellulose Based Biopolymer Electrolyte with Hybrid Fillers for Dye Sensitized Solar Cell","authors":"Neeru Sharma, Ashlesha P. Kawale, Arti Srivastava, Priyanka Chawla, Shivansh Tripathi, Mridula Tripathi","doi":"10.1134/S1023193524040098","DOIUrl":null,"url":null,"abstract":"<p>The aim of the present study is to evaluate the potential of both the use of zinc oxide (ZnO) nanoparticles as primary filler and graphene as secondary filler in carboxy methyl cellulose based polymer electrolyte. The films were characterized structurally and morphologically by X-ray diffraction (XRD), Fourier-transform infra red spectroscopy (FT-IR), scanning electron microscopy (XRD). XRD results showed that ZnO nanoparticles inclusion reduced the crystallinity of the prepared biopolymer electrolyte. Addition of graphene as secondary filler further reduced the crystallinity of the prepared biopolymer electrolyte film. The FTIR technique and SEM images confirmed the complexation of salts with the polymer matrix. Due to graphene’s ability to create conductive layers, the inclusion of a little amount of it as a supplementary filler increased the A.C. conductivity from 1.63 × 10<sup>–5</sup> to 2.6 × 10<sup>–4</sup> S cm<sup>–1</sup>. The synergistic effects of both fillers contributed to raising the polymer electrolyte film’s electrical conductivity. Utilizing this polymer electrolyte layer enabled the creation of a solid state DSSC with an efficiency of 2.6%.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"314 - 320"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524040098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the present study is to evaluate the potential of both the use of zinc oxide (ZnO) nanoparticles as primary filler and graphene as secondary filler in carboxy methyl cellulose based polymer electrolyte. The films were characterized structurally and morphologically by X-ray diffraction (XRD), Fourier-transform infra red spectroscopy (FT-IR), scanning electron microscopy (XRD). XRD results showed that ZnO nanoparticles inclusion reduced the crystallinity of the prepared biopolymer electrolyte. Addition of graphene as secondary filler further reduced the crystallinity of the prepared biopolymer electrolyte film. The FTIR technique and SEM images confirmed the complexation of salts with the polymer matrix. Due to graphene’s ability to create conductive layers, the inclusion of a little amount of it as a supplementary filler increased the A.C. conductivity from 1.63 × 10–5 to 2.6 × 10–4 S cm–1. The synergistic effects of both fillers contributed to raising the polymer electrolyte film’s electrical conductivity. Utilizing this polymer electrolyte layer enabled the creation of a solid state DSSC with an efficiency of 2.6%.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.