The Effect of the Pore Former Nature on the Microstructure of Solid-Oxide-Fuel-Cell NiO- and 10YSZ-Based Anodes Formed by Hybrid 3D-Printing

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-05-08 DOI:10.1134/s102319352403008x
I. A. Malbakhova, A. S. Bagishev, A. M. Vorobyev, T. A. Borisenko, A. I. Titkov
{"title":"The Effect of the Pore Former Nature on the Microstructure of Solid-Oxide-Fuel-Cell NiO- and 10YSZ-Based Anodes Formed by Hybrid 3D-Printing","authors":"I. A. Malbakhova, A. S. Bagishev, A. M. Vorobyev, T. A. Borisenko, A. I. Titkov","doi":"10.1134/s102319352403008x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The anodes based on the nickel oxide and yttria-stabilized zirconia are developed by the method of hybrid inkjet 3D-printing with laser treatment. The granulometric composition of the NiO/Zr<sub>0.9</sub>Y<sub>0.1</sub>O<sub>2</sub>-composite and the rheological characteristics of its based printing pastes are determined. The printing of three-dimensional test objects using the developed ceramic paste is studied experimentally. The influence of the pore formers—graphite and potato starch—added to the paste composition on the rheological characteristics of the paste is studied. The obtained samples of supporting anodes were studied by a complex of physicochemical methods to determine their morphological and structural characteristics.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s102319352403008x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The anodes based on the nickel oxide and yttria-stabilized zirconia are developed by the method of hybrid inkjet 3D-printing with laser treatment. The granulometric composition of the NiO/Zr0.9Y0.1O2-composite and the rheological characteristics of its based printing pastes are determined. The printing of three-dimensional test objects using the developed ceramic paste is studied experimentally. The influence of the pore formers—graphite and potato starch—added to the paste composition on the rheological characteristics of the paste is studied. The obtained samples of supporting anodes were studied by a complex of physicochemical methods to determine their morphological and structural characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合三维打印技术形成的固态氧化物燃料电池氧化镍和 10YSZ 基阳极的孔隙形式对其微观结构的影响
摘要 通过激光处理混合喷墨三维打印的方法,开发了基于氧化镍和钇稳定氧化锆的阳极。确定了氧化镍/Zr0.9Y0.1O2 复合材料的粒度组成及其基打印浆料的流变特性。实验研究了使用所开发的陶瓷浆料印刷三维测试物体的情况。研究了添加到浆糊成分中的孔隙成形剂(石墨和马铃薯淀粉)对浆糊流变特性的影响。对获得的支撑阳极样品进行了综合物理化学方法研究,以确定其形态和结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Electrochemical Synthesis of a Composite of Few-Layer Graphene Structures with PdNi-Alloy Nanoparticles and Its Electrocatalytic Activity in the Methanol Oxidation Reaction Numerical Modeling of Electrolyte-Supported Button Solid Oxide Direct Carbon Fuel Cell Based on Boudouard Reaction Electrocatalysts Based on Platinized Titanium Dioxide Doped with Ruthenium for Hydrogen and Carbon-Monoxide Potentiometric Sensors A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery Studies on Porous Nanostructured Palladium–Cobalt–Silica as Heterogeneous Catalysts for Oxygen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1