{"title":"Effect of KOH-N2/CO/air activation on the performance of coconut shell activated carbon for low temperature NH3 removal NO","authors":"Bangfu Huang, Wanjun Li, Zhe Shi, Linjing Yang","doi":"10.1007/s10450-024-00483-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of different combinations of potassium hydroxide (KOH)–nitrogen (N<sub>2)</sub>/carbon monoxide (CO)/air activation on the low-temperature ammonia (NH<sub>3</sub>) removal NO performance of coconut shell-activated carbon. KOH–N<sub>2</sub>-combined activation resulted in expanded pores of activated carbon, while high temperatures caused structural collapse. While increasing the activation temperature induced larger average pore sizes, introducing nitrogen-containing functional groups on the surface positively affected the NO conversion rate. Furthermore, while KOH–CO<sub>2</sub>-combined activation yielded activated carbon with denser and more ordered pore structures upon increasing activation temperature, a relatively large specific surface area and total pore volume were also observed. Introducing functional groups such as C = C on the surface yielded a higher overall NO conversion rate. Although KOH–air activation resulted in developed porous structures, some pore sizes were blocked, thereby yielding a smaller specific surface area. Nevertheless, introducing nitrogen-containing functional groups contributed to an overall increase in the NO conversion rate. Orthogonal experimental analysis revealed that activation time significantly impacted the physical activation process of KOH-activated carbon, followed by activation temperature, with activation gas minimally affecting the activated carbon structure and NO conversion rate. Notably, the optimal activation conditions included 1-h activated carbon activation in 3 mol/L of KOH, followed by 1-h CO<sub>2</sub> activation at 150℃.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"1059 - 1070"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00483-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of different combinations of potassium hydroxide (KOH)–nitrogen (N2)/carbon monoxide (CO)/air activation on the low-temperature ammonia (NH3) removal NO performance of coconut shell-activated carbon. KOH–N2-combined activation resulted in expanded pores of activated carbon, while high temperatures caused structural collapse. While increasing the activation temperature induced larger average pore sizes, introducing nitrogen-containing functional groups on the surface positively affected the NO conversion rate. Furthermore, while KOH–CO2-combined activation yielded activated carbon with denser and more ordered pore structures upon increasing activation temperature, a relatively large specific surface area and total pore volume were also observed. Introducing functional groups such as C = C on the surface yielded a higher overall NO conversion rate. Although KOH–air activation resulted in developed porous structures, some pore sizes were blocked, thereby yielding a smaller specific surface area. Nevertheless, introducing nitrogen-containing functional groups contributed to an overall increase in the NO conversion rate. Orthogonal experimental analysis revealed that activation time significantly impacted the physical activation process of KOH-activated carbon, followed by activation temperature, with activation gas minimally affecting the activated carbon structure and NO conversion rate. Notably, the optimal activation conditions included 1-h activated carbon activation in 3 mol/L of KOH, followed by 1-h CO2 activation at 150℃.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.