Estimation of the Acoustic Emission Sources Activity Under Mechanical Loading of Materials Based on the Local Dynamic Criterion

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Strength of Materials Pub Date : 2024-05-07 DOI:10.1007/s11223-024-00625-9
O. V. Drozdov, Yu. M. Volkov
{"title":"Estimation of the Acoustic Emission Sources Activity Under Mechanical Loading of Materials Based on the Local Dynamic Criterion","authors":"O. V. Drozdov, Yu. M. Volkov","doi":"10.1007/s11223-024-00625-9","DOIUrl":null,"url":null,"abstract":"<p>One of the most common ways to assess the activity of acoustic emission (AE) sources and their hazard under mechanical loading of materials and structures is to use the local-dynamic criterion. To verify the latter, specimens of various materials, namely fiberglass, corundum refractory, and steel, were tested under static loading during three-point bending. A special software AE-Criterion was developed to determine the AE parameters, including the current parameters of source activity, based on the local dynamic criterion using both the force factor and the time since the beginning of the test. Taking into account the multiplicity and stochastic nature of AE events during the loading of materials, it is proposed to determine the average values of <i>M</i><sub><i>S</i></sub>, <i>M</i><sub><i>T</i></sub>, and the values of the indices <i>I</i><sub><i>AS</i></sub> and <i>I</i><sub><i>AT</i></sub> of the activity degree of AE sources when applying the force parameter and time, respectively. The analysis of the data obtained during the bending tests of the above-mentioned specimens and, accordingly, the calculation of the parameters of source activity showed that the value of the index I<sub>AS</sub>, when using the force factor, satisfactorily reflects the deformation and fracture processes of these materials. The study’s results indicate the suitability of the local dynamic criterion for diagnosing the deformation and fracture processes of the above materials.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"45 1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00625-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most common ways to assess the activity of acoustic emission (AE) sources and their hazard under mechanical loading of materials and structures is to use the local-dynamic criterion. To verify the latter, specimens of various materials, namely fiberglass, corundum refractory, and steel, were tested under static loading during three-point bending. A special software AE-Criterion was developed to determine the AE parameters, including the current parameters of source activity, based on the local dynamic criterion using both the force factor and the time since the beginning of the test. Taking into account the multiplicity and stochastic nature of AE events during the loading of materials, it is proposed to determine the average values of MS, MT, and the values of the indices IAS and IAT of the activity degree of AE sources when applying the force parameter and time, respectively. The analysis of the data obtained during the bending tests of the above-mentioned specimens and, accordingly, the calculation of the parameters of source activity showed that the value of the index IAS, when using the force factor, satisfactorily reflects the deformation and fracture processes of these materials. The study’s results indicate the suitability of the local dynamic criterion for diagnosing the deformation and fracture processes of the above materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部动态标准估算材料机械负载下的声发射源活性
评估声发射(AE)源的活动及其在材料和结构机械负载下的危害的最常用方法之一是使用局部动态标准。为了验证后者,在三点弯曲的静态加载条件下对玻璃纤维、刚玉耐火材料和钢等不同材料的试样进行了测试。我们开发了一个专门的 AE-Criterion 软件,根据局部动态标准,利用力系数和测试开始后的时间来确定 AE 参数,包括源活动的当前参数。考虑到材料加载过程中 AE 事件的多重性和随机性,建议在应用力参数和时间时分别确定 MS、MT 以及 AE 源活动程度指数 IAS 和 IAT 的平均值。通过对上述试样弯曲试验中获得的数据进行分析,并据此计算出声源活动度参数,结果表明在使用力因子时,指数 IAS 的值能够令人满意地反映这些材料的变形和断裂过程。研究结果表明,局部动态标准适用于诊断上述材料的变形和断裂过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
期刊最新文献
Simulation Analysis of Mechanical Properties of DC Transmission Lines Under Mountain Fire Condition Eulerian Formulation of the Constitutive Relation for an Electro-Magneto-Elastic Material Class Impact Damage Prediction of Carbon Fiber Foam Sandwich Structure Based on the Hashin Failure Criterion Simulation of Low-Temperature Localized Serrated Deformation of Structural Materials in Liquid Helium Under Different Loading Modes and Potential Energy Accumulation Effect of Structural Anisotropy on a Fracture Mode of Ferromagnetic Steels Under Cyclic Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1