Efficient removal of piperazine by catalytic wet air oxidation using RuNiCe/γ-Al2O3-activated carbon†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-05-14 DOI:10.1039/D4EW00177J
Quanhui Zheng, Kaiwen Ren, Lin Qin, Xin Wang and Jianchao Ma
{"title":"Efficient removal of piperazine by catalytic wet air oxidation using RuNiCe/γ-Al2O3-activated carbon†","authors":"Quanhui Zheng, Kaiwen Ren, Lin Qin, Xin Wang and Jianchao Ma","doi":"10.1039/D4EW00177J","DOIUrl":null,"url":null,"abstract":"<p >The effective degradation of industrial wastewater containing high concentrations of chemical oxygen demand (COD) and ammonia nitrogen (NH<small><sub>3</sub></small>-N) is a critical challenge in industrial production. The RuNiCe/AAC catalyst prepared <em>via</em> impregnation and demonstrated a remarkable 99% efficiency rate in the catalytic wet air oxidation (CWAO) of industrial piperazine wastewater for removal. Analysis reveals uniform dispersion of nanometal particles across the carrier's surface and pores. Noble and transition metals regulate chemisorbed oxygen on the catalyst surface, facilitating redox reactions. The strong Ce–Ni interaction promotes the reduction of Ce<small><sup>4+</sup></small> during CWAO, inducing reversible valence state changes. This enables electron transfer from high-binding-energy Ni to lower-binding-energy Ru, fostering a synergistic interaction that enhances reaction rate and catalyst stability. The catalyst promotes the generation of hydroxyl radicals from dissolved oxygen, which attack piperazine, leading to heterocyclic ring opening and conversion to <em>N</em>-acetylethylenediamine. Subsequent N–C bond cleavage produces formaldehyde, ethanedioic acid, and ethylenediamine, ultimately achieving complete piperazine mineralization <em>via</em> diverse degradation pathways. This study further advances the research progress of efficient degradation of ammonia-nitrogen organic wastewater and provides new insights into the structural design of non-homogeneous catalysts for CWAO.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00177j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effective degradation of industrial wastewater containing high concentrations of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) is a critical challenge in industrial production. The RuNiCe/AAC catalyst prepared via impregnation and demonstrated a remarkable 99% efficiency rate in the catalytic wet air oxidation (CWAO) of industrial piperazine wastewater for removal. Analysis reveals uniform dispersion of nanometal particles across the carrier's surface and pores. Noble and transition metals regulate chemisorbed oxygen on the catalyst surface, facilitating redox reactions. The strong Ce–Ni interaction promotes the reduction of Ce4+ during CWAO, inducing reversible valence state changes. This enables electron transfer from high-binding-energy Ni to lower-binding-energy Ru, fostering a synergistic interaction that enhances reaction rate and catalyst stability. The catalyst promotes the generation of hydroxyl radicals from dissolved oxygen, which attack piperazine, leading to heterocyclic ring opening and conversion to N-acetylethylenediamine. Subsequent N–C bond cleavage produces formaldehyde, ethanedioic acid, and ethylenediamine, ultimately achieving complete piperazine mineralization via diverse degradation pathways. This study further advances the research progress of efficient degradation of ammonia-nitrogen organic wastewater and provides new insights into the structural design of non-homogeneous catalysts for CWAO.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 RuNiCe/γ-Al2O3 活性炭催化湿空气氧化法高效去除哌嗪
有效降解含有高浓度化学需氧量(COD)和氨氮(NH3-N)的工业废水是工业生产中面临的一项严峻挑战。通过浸渍法制备的 RuNiCe/AAC 催化剂在工业哌嗪废水的催化湿空气氧化(CWAO)去除效率高达 99%。分析表明,纳米颗粒在载体表面和孔隙中均匀分散。贵金属和过渡金属调节催化剂表面的化学吸附氧,促进氧化还原反应。在 CWAO 过程中,Ce-Ni 的强相互作用促进了 Ce4+ 的还原,诱导了可逆的价态变化。这使得电子从结合能高的 Ni 转移到结合能低的 Ru 上,产生了协同作用,从而提高了反应速率和催化剂稳定性。催化剂促进溶解氧产生羟自由基,羟自由基攻击哌嗪,导致杂环打开并转化为 N-乙酰乙二胺。随后,N-C 键裂解产生甲醛、乙二酸和乙二胺,最终通过不同的降解途径实现哌嗪的完全矿化。这项研究进一步推动了氨氮有机废水高效降解的研究进展,并为 CWAO 非均相催化剂的结构设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover A comprehensive study on the physicochemical characteristics of faecal sludge from Septic Tanks and Single Pit Latrines facilities in a typical semi-urban Indian town: A Case Study of Rajasthan, India Lead ions (Pb2+) Electrochemical Sensors Based on Novel Schiff Base Ligands Concurrent Boron Removal from Reverse Osmosis Concentrated and Energy Production using Microbial Desalination Cell-Donnan Dialysis Hybrid System Investigation of the effect of Al2O3/water nanofluid on the performance of a thermoelectric cooler to harvest water from humid air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1