Enhanced Removal of Potassium, Sodium, and Lead During the Iron Ore Sintering Process

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Metallurgy Pub Date : 2024-05-09 DOI:10.1007/s40831-024-00788-4
Yannan Wang, Min Gan, Xiaohui Fan, Zhiyun Ji, Wei Lv, Ganesh Pilla, Mingfeng Ye
{"title":"Enhanced Removal of Potassium, Sodium, and Lead During the Iron Ore Sintering Process","authors":"Yannan Wang, Min Gan, Xiaohui Fan, Zhiyun Ji, Wei Lv, Ganesh Pilla, Mingfeng Ye","doi":"10.1007/s40831-024-00788-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, a mixture rich in K, Na, and Pb, composed of undesired elements rich iron ore A, sinter dust, and blast furnace dust (ore-dust mix,), is sintered along with the regular iron ore. The K, Na, and Pb compounds within the ore-dust mix are identified as alkali chlorides, alkali aluminosilicates, PbO, and PbSO<sub>4</sub> using X-ray diffraction. The primary objective is to investigate the impact of three distinct sintering technologies: regular (pre-reduction) sintering, double-layer sintering, and hearth-layer sintering, on the removal degrees of K, Na, and Pb. In both the regular and double-layer sintering processes, the K, Na, and Pb contents within the blend of raw materials was measured approximately 0.430 wt%, 0.105 wt%, and 0.033 wt%, respectively. Moreover, the ratio of ore-dust mix to the regular ore was 0.54. In the regular sinter pot test, sinter feed was uniformly placed in the pot. In the run of the regular sinter pot test with the optimal coke breeze ratio of 20 wt%, the removal degrees of K, Na, and Pb were 79.5%, 67.5% and 92.7%, respectively. In comparison, the double-layer sintering technology resulted in a slight increase in the removal degrees for alkali metals and a similar removal degree for Pb, while utilizing a reduced coke breeze ratio of only 8.10 wt%. The removal mechanism of the hearth-layer and double-layer sintering processes are similar. However, the coke breeze ratio decreases to 6.63 wt% as the fraction of ore-dust mix within the blend of raw materials is reduced to 7 wt% during the hearth-layer sintering process.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"155 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00788-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a mixture rich in K, Na, and Pb, composed of undesired elements rich iron ore A, sinter dust, and blast furnace dust (ore-dust mix,), is sintered along with the regular iron ore. The K, Na, and Pb compounds within the ore-dust mix are identified as alkali chlorides, alkali aluminosilicates, PbO, and PbSO4 using X-ray diffraction. The primary objective is to investigate the impact of three distinct sintering technologies: regular (pre-reduction) sintering, double-layer sintering, and hearth-layer sintering, on the removal degrees of K, Na, and Pb. In both the regular and double-layer sintering processes, the K, Na, and Pb contents within the blend of raw materials was measured approximately 0.430 wt%, 0.105 wt%, and 0.033 wt%, respectively. Moreover, the ratio of ore-dust mix to the regular ore was 0.54. In the regular sinter pot test, sinter feed was uniformly placed in the pot. In the run of the regular sinter pot test with the optimal coke breeze ratio of 20 wt%, the removal degrees of K, Na, and Pb were 79.5%, 67.5% and 92.7%, respectively. In comparison, the double-layer sintering technology resulted in a slight increase in the removal degrees for alkali metals and a similar removal degree for Pb, while utilizing a reduced coke breeze ratio of only 8.10 wt%. The removal mechanism of the hearth-layer and double-layer sintering processes are similar. However, the coke breeze ratio decreases to 6.63 wt% as the fraction of ore-dust mix within the blend of raw materials is reduced to 7 wt% during the hearth-layer sintering process.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在铁矿石烧结过程中提高钾、钠和铅的去除率
在这项研究中,一种富含 K、Na 和 Pb 的混合物与普通铁矿石一起烧结,这种混合物由富含不需要元素的铁矿石 A、烧结粉尘和高炉粉尘(矿石粉尘混合物)组成。通过 X 射线衍射,确定矿石粉尘混合物中的钾、镍和铅化合物为碱式氯化物、碱式铝硅酸盐、PbO 和 PbSO4。主要目的是研究三种不同的烧结技术:常规(还原前)烧结、双层烧结和炉层烧结对 K、Na 和 Pb 去除程度的影响。在常规烧结工艺和双层烧结工艺中,混合原料中 K、Na 和 Pb 的含量分别约为 0.430 wt%、0.105 wt% 和 0.033 wt%。此外,矿尘混合物与普通矿石的比例为 0.54。在常规烧结锅试验中,烧结矿给料被均匀地放置在烧结锅中。在最佳焦炭微风比为 20 wt%的常规烧结锅试验中,K、Na 和 Pb 的去除率分别为 79.5%、67.5% 和 92.7%。相比之下,双层烧结技术对碱金属的去除率略有提高,对铅的去除率也相差无几,而使用的焦炭微风比仅为 8.10 wt%。炉层烧结工艺和双层烧结工艺的去除机理相似。不过,在炉层烧结过程中,由于混合原料中的矿粉比例降低到 7%,焦风比降至 6.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
期刊最新文献
Iron Chloride Vapor Treatment for Leaching Platinum Group Metals from Spent Catalysts Environmentally Friendly Separating of Fine Copper Particles from Lithium Iron Phosphate and Graphite by Centrifugal Gravity Concentration Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries A New Approach of Pelletizing: Use of Low-Grade Ore as a Potential Raw Material Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1