Kai Fan, Chuanyang Gao, Jinshen Lei, Junwei Zhou, Enmei Liu, Xiaoying Liu
{"title":"Preparation of PVDF-g-PSBA Membrane by Homogeneous Solution Gamma-Ray Co-Irradiation and Its Antibacterial Effects","authors":"Kai Fan, Chuanyang Gao, Jinshen Lei, Junwei Zhou, Enmei Liu, Xiaoying Liu","doi":"10.1134/s001814392470005x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Poly(S-bioallethrin) (PSBA) was grafted onto the polyvinylidene fluoride (PVDF) molecular chain through a gamma-ray irradiation method to prepare the PVDF-g-PSBA membrane. Fourier transform infrared spectroscopy (FTIR) of different membranes confirmed the effective progress of the grafting reaction. The microstructure of the membrane before and after irradiation was analyzed by scanning electron microscope (SEM), illustrating that gamma-ray irradiation did not cause damage to the membrane structure. The original PVDF membrane and the modified PVDF-g-PSBA membrane were immersed in an Escherichia coli culture medium, and the antibacterial effects of membranes were tested, confirming the positive effect of the PVDF-g-PSBA membrane on inhibiting bacterial growth. This research could have market application value in terms of altering membrane materials and enhancing membrane performance.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s001814392470005x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(S-bioallethrin) (PSBA) was grafted onto the polyvinylidene fluoride (PVDF) molecular chain through a gamma-ray irradiation method to prepare the PVDF-g-PSBA membrane. Fourier transform infrared spectroscopy (FTIR) of different membranes confirmed the effective progress of the grafting reaction. The microstructure of the membrane before and after irradiation was analyzed by scanning electron microscope (SEM), illustrating that gamma-ray irradiation did not cause damage to the membrane structure. The original PVDF membrane and the modified PVDF-g-PSBA membrane were immersed in an Escherichia coli culture medium, and the antibacterial effects of membranes were tested, confirming the positive effect of the PVDF-g-PSBA membrane on inhibiting bacterial growth. This research could have market application value in terms of altering membrane materials and enhancing membrane performance.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.