Features of Few-Layer Phosphorene Structure Synthesis by Plasma-Assisted Electrochemical Exfoliation of Black Phosphorus

IF 0.9 4区 化学 Q4 CHEMISTRY, PHYSICAL High Energy Chemistry Pub Date : 2024-05-13 DOI:10.1134/s0018143924700073
V. K. Kochergin, R. A. Manzhos, N. S. Komarova, A. S. Kotkin, A. G. Krivenko, I. N. Krushinskaya, A. A. Pelmenev
{"title":"Features of Few-Layer Phosphorene Structure Synthesis by Plasma-Assisted Electrochemical Exfoliation of Black Phosphorus","authors":"V. K. Kochergin, R. A. Manzhos, N. S. Komarova, A. S. Kotkin, A. G. Krivenko, I. N. Krushinskaya, A. A. Pelmenev","doi":"10.1134/s0018143924700073","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A comparative study has been conducted on the cathode electrolysis plasma emission spectra recorded during the plasma-assisted electrochemical exfoliation of black phosphorus and graphite under maximally identical experimental conditions. It has been found that in the case of black phosphorus exfoliation, the concentration of active intermediates (OH radicals and O atoms) in electrolytic plasma is significantly lower than that in the case of the graphite electrode. It has been assumed that this effect is due to the fact that the rate of interaction of the above intermediates with the synthesized phosphorene structures is significantly higher than the rate of interaction with graphene-like particles. This assumption has been confirmed by the detection of a significantly higher oxygen content in the exfoliation products of black phosphorus than the oxygen content in the synthesized carbon nanoparticles.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924700073","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A comparative study has been conducted on the cathode electrolysis plasma emission spectra recorded during the plasma-assisted electrochemical exfoliation of black phosphorus and graphite under maximally identical experimental conditions. It has been found that in the case of black phosphorus exfoliation, the concentration of active intermediates (OH radicals and O atoms) in electrolytic plasma is significantly lower than that in the case of the graphite electrode. It has been assumed that this effect is due to the fact that the rate of interaction of the above intermediates with the synthesized phosphorene structures is significantly higher than the rate of interaction with graphene-like particles. This assumption has been confirmed by the detection of a significantly higher oxygen content in the exfoliation products of black phosphorus than the oxygen content in the synthesized carbon nanoparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体辅助电化学剥离黑磷合成少层磷烯结构的特点
摘要 在最大程度相同的实验条件下,对黑磷和石墨在等离子体辅助电化学剥离过程中记录的阴极电解等离子体发射光谱进行了比较研究。研究发现,在黑磷剥离的情况下,电解等离子体中活性中间产物(OH 自由基和 O 原子)的浓度明显低于石墨电极。据推测,产生这种效应的原因是上述中间产物与合成磷烯结构的相互作用速率明显高于与类石墨烯颗粒的相互作用速率。通过检测黑磷剥离产物中的氧含量明显高于合成碳纳米颗粒中的氧含量,证实了这一假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Energy Chemistry
High Energy Chemistry 化学-物理化学
CiteScore
1.50
自引率
28.60%
发文量
62
审稿时长
6-12 weeks
期刊介绍: High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.
期刊最新文献
Colloidal Quantum Dots: 3. Molecular Dynamics Simulation of Quantum Dot Structure Colloidal Quantum Dots: 1. Colloidal Quantum Dots, a New Class of Luminophores Colloidal Quantum Dots: 4. Colloidal Quantum Dots and Basic Photoluminescence Laws Colloidal Quantum Dots: 2. Methods for the Synthesis of Colloidal Quantum Dots Colloidal Quantum Dots: 5. Luminescence Features of Colloidal Quantum Dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1