Industrial Ecotechnological Assessment of Lime as a Sustainable Substitute for Desulfurization of Cast Iron

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Metallurgy Pub Date : 2024-05-06 DOI:10.1007/s40831-024-00829-y
I. Adhiwiguna, K. Vellayadevan, Y. Tekneci, M. Walz, D. Algermissen, R. Deike
{"title":"Industrial Ecotechnological Assessment of Lime as a Sustainable Substitute for Desulfurization of Cast Iron","authors":"I. Adhiwiguna, K. Vellayadevan, Y. Tekneci, M. Walz, D. Algermissen, R. Deike","doi":"10.1007/s40831-024-00829-y","DOIUrl":null,"url":null,"abstract":"<p>This study comprehensively assesses the ecotechnological consideration and perspective of implementing a lime-based desulfurization process in the cast iron industry to replace the utilization of magnesium partially. By adopting an injection process to introduce the lime powder into molten cast iron, this research elucidated that the new alternative concept can successfully be integrated with daily operations without any disparities in cast iron quality, as proved by the production of cast iron products with vermicular graphite. A mixture of lime powder and carbon was utilized, and it was substantiated that the aim of a sulfur content lower than 0.015% can be reliably achieved. Furthermore, an ecological analysis was also conducted to justify the possible environmental advantages. The results indicated that considering the cradle-to-gate approach, the maximum amount of CO<sub>2</sub>eq connected to the lime-based desulfurization is approximately 43 g for 1 kg of desulfurized cast iron. This amount of calculated emission is still expected to be lower than the minimum calculated emission associated with the magnesium-based process, which can reach an amount of 76 g for a similar functional unit.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00829-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study comprehensively assesses the ecotechnological consideration and perspective of implementing a lime-based desulfurization process in the cast iron industry to replace the utilization of magnesium partially. By adopting an injection process to introduce the lime powder into molten cast iron, this research elucidated that the new alternative concept can successfully be integrated with daily operations without any disparities in cast iron quality, as proved by the production of cast iron products with vermicular graphite. A mixture of lime powder and carbon was utilized, and it was substantiated that the aim of a sulfur content lower than 0.015% can be reliably achieved. Furthermore, an ecological analysis was also conducted to justify the possible environmental advantages. The results indicated that considering the cradle-to-gate approach, the maximum amount of CO2eq connected to the lime-based desulfurization is approximately 43 g for 1 kg of desulfurized cast iron. This amount of calculated emission is still expected to be lower than the minimum calculated emission associated with the magnesium-based process, which can reach an amount of 76 g for a similar functional unit.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石灰作为铸铁脱硫的可持续替代品的工业生态技术评估
本研究全面评估了在铸铁工业中实施石灰脱硫工艺以部分替代镁的使用的生态技术考虑因素和前景。通过采用喷射工艺将石灰粉引入熔融铸铁,这项研究阐明了新的替代概念可以成功地与日常操作相结合,而不会影响铸铁的质量,这一点已通过生产带有蠕墨的铸铁产品得到证明。利用石灰粉和碳的混合物,可以可靠地实现硫含量低于 0.015% 的目标。此外,还进行了生态分析,以证明可能的环境优势。结果表明,考虑到 "从摇篮到终点 "的方法,与石灰脱硫有关的最大二氧化碳当量约为 43 克(每公斤脱硫铸铁)。这一计算排放量预计仍将低于与镁法工艺相关的最小计算排放量,对于类似的功能单元,镁法工艺的排放量可达 76 克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
期刊最新文献
Iron Chloride Vapor Treatment for Leaching Platinum Group Metals from Spent Catalysts Environmentally Friendly Separating of Fine Copper Particles from Lithium Iron Phosphate and Graphite by Centrifugal Gravity Concentration Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries A New Approach of Pelletizing: Use of Low-Grade Ore as a Potential Raw Material Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1