{"title":"The Enhancing Mechanism of Na2SO4 on Mullite Decomposition and Alumina Recovery During the Vacuum Carbothermic Reduction of Coal Fly Ash","authors":"Joseph Emmanuel Nyarko-Appiah, Wenzhou Yu, Lanjiang Song, Peng Wei, Hao Chen","doi":"10.1007/s40831-024-00832-3","DOIUrl":null,"url":null,"abstract":"<p>The utilization of coal fly ash has been of great concern in recent years due to the growing awareness of waste recycling and environmental protection. Alumina recycling from coal fly ash is a good path to realize the state-of-the-art utilization of coal fly ash. The present work proposes a novel strategy for recovering alumina and producing Fe–Si alloy from coal fly ash employing Na<sub>2</sub>SO<sub>4</sub> as the additive. The enhancing mechanism of the Na<sub>2</sub>SO<sub>4</sub> addition on the mullite (Al<sub>6</sub>Si<sub>2</sub>O<sub>13</sub>) decomposition and alumina extraction during vacuum carbothermic reduction of coal fly ash was systematically investigated. The thermodynamic calculation results show that the theoretical decomposition temperature of mullite can be decreased from 1048 to 683 K with the assistance of Na<sub>2</sub>SO<sub>4</sub>, which means that the addition of Na<sub>2</sub>SO<sub>4</sub> can effectively eliminate the mullite phase. Furthermore, the aggregation of Fe–Si alloy particles was enhanced efficiently in the presence of Na<sub>2</sub>SO<sub>4</sub>, which was proved to be conducive to the alumina and Fe–Si alloy separation in the subsequent magnetic separation process. As the Na<sub>2</sub>SO<sub>4</sub> addition amounts changed from 0 to 12 wt% at 1423 K for 4 h, the average size of the Fe–Si alloys particle exhibited an enlargement from 21.39 to 39.94 μm, by which the recovery efficiency of alumina increased from 61.03 to 75.26% correspondingly.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"4 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00832-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of coal fly ash has been of great concern in recent years due to the growing awareness of waste recycling and environmental protection. Alumina recycling from coal fly ash is a good path to realize the state-of-the-art utilization of coal fly ash. The present work proposes a novel strategy for recovering alumina and producing Fe–Si alloy from coal fly ash employing Na2SO4 as the additive. The enhancing mechanism of the Na2SO4 addition on the mullite (Al6Si2O13) decomposition and alumina extraction during vacuum carbothermic reduction of coal fly ash was systematically investigated. The thermodynamic calculation results show that the theoretical decomposition temperature of mullite can be decreased from 1048 to 683 K with the assistance of Na2SO4, which means that the addition of Na2SO4 can effectively eliminate the mullite phase. Furthermore, the aggregation of Fe–Si alloy particles was enhanced efficiently in the presence of Na2SO4, which was proved to be conducive to the alumina and Fe–Si alloy separation in the subsequent magnetic separation process. As the Na2SO4 addition amounts changed from 0 to 12 wt% at 1423 K for 4 h, the average size of the Fe–Si alloys particle exhibited an enlargement from 21.39 to 39.94 μm, by which the recovery efficiency of alumina increased from 61.03 to 75.26% correspondingly.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.