{"title":"Hardware architecture optimization for high-frequency zeroing and LFNST in H.266/VVC based on FPGA","authors":"Junxiang Zhang, Qinghua Sheng, Rui Pan, Jiawei Wang, Kuan Qin, Xiaofang Huang, Xiaoyan Niu","doi":"10.1007/s11554-024-01470-4","DOIUrl":null,"url":null,"abstract":"<p>To reduce the hardware implementation resource consumption of the two-dimensional transform component in H.266 VVC, a unified hardware structure is proposed that supports full-size Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and full-size Low-Frequency Non-Separable Transform (LFNST). This paper presents an area-efficient hardware architecture for two-dimensional transforms based on a general Regular Multiplier (RM) and a high-throughput hardware design for LFNST in the context of H.266/VVC. The first approach utilizes the high-frequency zeroing characteristics of VVC and the symmetric properties of the DCT-II matrix, allowing the RM-based architecture to use only 256 general multipliers in a fully pipelined structure with a parallelism of 16. The second approach optimizes the transpose operation of the input matrix for LFNST in a parallelism of 16 architecture, aiming to save storage and logic resources.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"156 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01470-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the hardware implementation resource consumption of the two-dimensional transform component in H.266 VVC, a unified hardware structure is proposed that supports full-size Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and full-size Low-Frequency Non-Separable Transform (LFNST). This paper presents an area-efficient hardware architecture for two-dimensional transforms based on a general Regular Multiplier (RM) and a high-throughput hardware design for LFNST in the context of H.266/VVC. The first approach utilizes the high-frequency zeroing characteristics of VVC and the symmetric properties of the DCT-II matrix, allowing the RM-based architecture to use only 256 general multipliers in a fully pipelined structure with a parallelism of 16. The second approach optimizes the transpose operation of the input matrix for LFNST in a parallelism of 16 architecture, aiming to save storage and logic resources.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.