{"title":"A trajectory planning method for robotic arms based on improved dynamic motion primitives","authors":"Xiaohui Jia, Bin Zhao, Jinyue Liu, Shaolong Zhang","doi":"10.1108/ir-12-2023-0322","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Traditional robot arm trajectory planning methods have problems such as insufficient generalization performance and low adaptability. This paper aims to propose a method to plan the robot arm’s trajectory using the trajectory learning and generalization characteristics of dynamic motion primitives (DMPs).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study aligns multiple demonstration motion primitives using dynamic time warping; use the Gaussian mixture model and Gaussian mixture regression methods to obtain the ideal primitive trajectory actions. By establishing a system model that improves DMPs, the parameters of the nonlinear function are learned based on the ideal primitive trajectory actions of the robotic arm, and the robotic arm motion trajectory is reproduced and generalized.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Experiments have proven that the robot arm motion trajectory learned by the method proposed in this article can not only learn to generalize and demonstrate the movement trend of the primitive trajectory, but also can better generate ideal motion trajectories and avoid obstacles when there are obstacles. The maximum Euclidean distance between the generated trajectory and the demonstration primitive trajectory is reduced by 29.9%, and the average Euclidean distance is reduced by 54.2%. This illustrates the feasibility of this method for robot arm trajectory planning.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>It provides a new method for the trajectory planning of robotic arms in unstructured environments while improving the adaptability and generalization performance of robotic arms in trajectory planning.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-12-2023-0322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Traditional robot arm trajectory planning methods have problems such as insufficient generalization performance and low adaptability. This paper aims to propose a method to plan the robot arm’s trajectory using the trajectory learning and generalization characteristics of dynamic motion primitives (DMPs).
Design/methodology/approach
This study aligns multiple demonstration motion primitives using dynamic time warping; use the Gaussian mixture model and Gaussian mixture regression methods to obtain the ideal primitive trajectory actions. By establishing a system model that improves DMPs, the parameters of the nonlinear function are learned based on the ideal primitive trajectory actions of the robotic arm, and the robotic arm motion trajectory is reproduced and generalized.
Findings
Experiments have proven that the robot arm motion trajectory learned by the method proposed in this article can not only learn to generalize and demonstrate the movement trend of the primitive trajectory, but also can better generate ideal motion trajectories and avoid obstacles when there are obstacles. The maximum Euclidean distance between the generated trajectory and the demonstration primitive trajectory is reduced by 29.9%, and the average Euclidean distance is reduced by 54.2%. This illustrates the feasibility of this method for robot arm trajectory planning.
Originality/value
It provides a new method for the trajectory planning of robotic arms in unstructured environments while improving the adaptability and generalization performance of robotic arms in trajectory planning.