Small multimodal thermometry with detonation-created multi-color centers in detonation nanodiamond

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-05-10 DOI:10.1063/5.0201154
Frederick T.-K. So, Nene Hariki, Masaya Nemoto, Alexander I. Shames, Ming Liu, Akihiko Tsurui, Taro Yoshikawa, Yuto Makino, Masanao Ohori, Masanori Fujiwara, Ernst David Herbschleb, Naoya Morioka, Izuru Ohki, Masahiro Shirakawa, Ryuji Igarashi, Masahiro Nishikawa, Norikazu Mizuochi
{"title":"Small multimodal thermometry with detonation-created multi-color centers in detonation nanodiamond","authors":"Frederick T.-K. So, Nene Hariki, Masaya Nemoto, Alexander I. Shames, Ming Liu, Akihiko Tsurui, Taro Yoshikawa, Yuto Makino, Masanao Ohori, Masanori Fujiwara, Ernst David Herbschleb, Naoya Morioka, Izuru Ohki, Masahiro Shirakawa, Ryuji Igarashi, Masahiro Nishikawa, Norikazu Mizuochi","doi":"10.1063/5.0201154","DOIUrl":null,"url":null,"abstract":"Detonation nanodiamond (DND) is the smallest class of diamond nanocrystal capable of hosting various color centers with a size akin to molecular pores. Their negatively charged nitrogen-vacancy center (NV−) is a versatile tool for sensing a wide range of physical and even chemical parameters at the nanoscale. The NV− is, therefore, attracting interest as the smallest quantum sensor in biological research. Nonetheless, recent NV− enhancement in DND has yet to yield sufficient fluorescence per particle, leading to efforts to incorporate other group-IV color centers into DND. An example is adding a silicon dopant to the explosive mixture to create negatively charged silicon-vacancy centers (SiV−). In this paper, we report on efficient observation (∼50% of randomly selected spots) of the characteristic optically detected magnetic resonance (ODMR) NV− signal in silicon-doped DND (Si-DND) subjected to boiling acid surface cleaning. The NV− concentration is estimated by continuous-wave electron spin resonance spectroscopy to be 0.35 ppm without the NV− enrichment process. A temperature sensitivity of 0.36K/Hz in an NV− ensemble inside an aggregate of Si-DND is achieved via the ODMR-based technique. Transmission electron microscopy survey reveals that the Si-DNDs core sizes are ∼11.2 nm, the smallest among the nanodiamond’s temperature sensitivity studies. Furthermore, temperature sensing using both SiV− (all-optical technique) and NV− (ODMR-based technique) in the same confocal volume is demonstrated, showing Si-DND’s multimodal temperature sensing capability. The results of the study thereby pave a path for multi-color and multimodal biosensors and for decoupling the detected electrical field and temperature effects on the NV− center.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0201154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Detonation nanodiamond (DND) is the smallest class of diamond nanocrystal capable of hosting various color centers with a size akin to molecular pores. Their negatively charged nitrogen-vacancy center (NV−) is a versatile tool for sensing a wide range of physical and even chemical parameters at the nanoscale. The NV− is, therefore, attracting interest as the smallest quantum sensor in biological research. Nonetheless, recent NV− enhancement in DND has yet to yield sufficient fluorescence per particle, leading to efforts to incorporate other group-IV color centers into DND. An example is adding a silicon dopant to the explosive mixture to create negatively charged silicon-vacancy centers (SiV−). In this paper, we report on efficient observation (∼50% of randomly selected spots) of the characteristic optically detected magnetic resonance (ODMR) NV− signal in silicon-doped DND (Si-DND) subjected to boiling acid surface cleaning. The NV− concentration is estimated by continuous-wave electron spin resonance spectroscopy to be 0.35 ppm without the NV− enrichment process. A temperature sensitivity of 0.36K/Hz in an NV− ensemble inside an aggregate of Si-DND is achieved via the ODMR-based technique. Transmission electron microscopy survey reveals that the Si-DNDs core sizes are ∼11.2 nm, the smallest among the nanodiamond’s temperature sensitivity studies. Furthermore, temperature sensing using both SiV− (all-optical technique) and NV− (ODMR-based technique) in the same confocal volume is demonstrated, showing Si-DND’s multimodal temperature sensing capability. The results of the study thereby pave a path for multi-color and multimodal biosensors and for decoupling the detected electrical field and temperature effects on the NV− center.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在引爆纳米金刚石中利用引爆产生的多色中心进行小型多模式测温
引爆纳米金刚石(DND)是最小的一类金刚石纳米晶体,能够容纳各种色心,其大小类似于分子孔隙。其带负电荷的氮空穴中心(NV-)是在纳米尺度上感测各种物理甚至化学参数的多功能工具。因此,NV- 作为生物研究中最小的量子传感器正引起人们的兴趣。然而,最近在 DND 中对 NV- 的增强尚未使每个粒子产生足够的荧光,因此人们开始努力在 DND 中加入其他第四族色彩中心。其中一个例子是在爆炸混合物中添加硅掺杂剂,以产生带负电荷的硅空穴中心(SiV-)。在本文中,我们报告了在经过沸腾酸表面清洗的掺硅 DND(Si-DND)中有效观察到(随机选择的点中有 50%)特征性光检测磁共振(ODMR)NV- 信号的情况。通过连续波电子自旋共振光谱法估算,在没有 NV- 富集过程的情况下,NV- 浓度为 0.35 ppm。通过基于 ODMR 的技术,Si-DND 聚集体内部 NV- 集合的温度灵敏度达到 0.36K/Hz 。透射电子显微镜调查显示,Si-DND 的核心尺寸为 11.2 纳米,是纳米金刚石温度灵敏度研究中最小的。此外,在同一共焦体积内,利用 SiV-(全光学技术)和 NV-(基于 ODMR 的技术)实现了温度传感,显示了 Si-DND 的多模态温度传感能力。研究结果为多颜色和多模态生物传感器以及解耦检测到的电场和 NV- 中心的温度效应铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1