Modeling and simulation of grain growth for FGH96 superalloy using a developed cellular automaton model

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-05-12 DOI:10.1088/1361-651x/ad4405
Yanhui Yang, Boyan Zhang, Xiuquan Chen, Xiaoxuan Wang and Jingshi Sun
{"title":"Modeling and simulation of grain growth for FGH96 superalloy using a developed cellular automaton model","authors":"Yanhui Yang, Boyan Zhang, Xiuquan Chen, Xiaoxuan Wang and Jingshi Sun","doi":"10.1088/1361-651x/ad4405","DOIUrl":null,"url":null,"abstract":"Through heat treatment experiments and numerical simulations, the effects of the heating temperature (1313–1423 K) and holding time (10–240 min) on the grain growth behavior of the extruded FGH96 alloy were investigated. A two-dimensional cellular automata (CA) model that considered the dissolution of the γ′ phase over time and the distribution characteristics with different sizes was developed to explore the grain growth behavior above the γ′ phase over-solution temperature (1423 K) and below the γ′ sub-solution temperature (1383 K), respectively. The results showed that the rate of grain growth of FGH96 alloy was obviously enhanced when the heating temperature exceeded 1363 K, which was mainly related to the dissolution of the γ′ phase, and the grain growth of FGH96 alloy mainly occurred during the initial stage of insulation. The grain growth model of the extruded FHG96 alloy could accurately predict the grain growth behavior, and the simulation results were in good agreement with the experimental results at over-solution temperature or sub-solution temperature. The effects of volume fraction and radius of γ′ phase on the grain growth behavior of FGH96 alloy were studied by simulating the grain growth behavior of FGH96 alloy under different sizes and volume fractions of γ′ phase. The results follow the Zener relation, and the coefficient n in the Zener relation was determined by fitting the simulation results.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"62 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4405","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Through heat treatment experiments and numerical simulations, the effects of the heating temperature (1313–1423 K) and holding time (10–240 min) on the grain growth behavior of the extruded FGH96 alloy were investigated. A two-dimensional cellular automata (CA) model that considered the dissolution of the γ′ phase over time and the distribution characteristics with different sizes was developed to explore the grain growth behavior above the γ′ phase over-solution temperature (1423 K) and below the γ′ sub-solution temperature (1383 K), respectively. The results showed that the rate of grain growth of FGH96 alloy was obviously enhanced when the heating temperature exceeded 1363 K, which was mainly related to the dissolution of the γ′ phase, and the grain growth of FGH96 alloy mainly occurred during the initial stage of insulation. The grain growth model of the extruded FHG96 alloy could accurately predict the grain growth behavior, and the simulation results were in good agreement with the experimental results at over-solution temperature or sub-solution temperature. The effects of volume fraction and radius of γ′ phase on the grain growth behavior of FGH96 alloy were studied by simulating the grain growth behavior of FGH96 alloy under different sizes and volume fractions of γ′ phase. The results follow the Zener relation, and the coefficient n in the Zener relation was determined by fitting the simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用开发的细胞自动机模型对 FGH96 超合金的晶粒生长进行建模和模拟
通过热处理实验和数值模拟,研究了加热温度(1313-1423 K)和保温时间(10-240 min)对挤压 FGH96 合金晶粒生长行为的影响。建立了一个二维单元自动机(CA)模型,该模型考虑了γ′相随时间的溶解和不同尺寸的分布特征,分别探讨了高于γ′相过溶温度(1423 K)和低于γ′相亚溶温度(1383 K)的晶粒生长行为。结果表明,当加热温度超过1363 K时,FGH96合金的晶粒长大速率明显加快,这主要与γ′相的溶解有关,FGH96合金的晶粒长大主要发生在保温初期。挤压 FHG96 合金的晶粒长大模型能准确预测晶粒长大行为,模拟结果与过溶解温度或亚溶解温度下的实验结果吻合良好。通过模拟不同尺寸和体积分数的γ′相对FGH96合金晶粒长大行为的影响,研究了γ′相的体积分数和半径对FGH96合金晶粒长大行为的影响。结果遵循齐纳关系,并通过拟合模拟结果确定了齐纳关系中的系数 n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1