Reply to comment on ‘Composition-based aluminum alloy selection using an artificial neural network’

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-05-08 DOI:10.1088/1361-651x/ad4574
Jaka Fajar Fatriansyah, Raihan Kenji Rizqillah, Iping Suhariadi, Andreas Federico, Ade Kurniawan
{"title":"Reply to comment on ‘Composition-based aluminum alloy selection using an artificial neural network’","authors":"Jaka Fajar Fatriansyah, Raihan Kenji Rizqillah, Iping Suhariadi, Andreas Federico, Ade Kurniawan","doi":"10.1088/1361-651x/ad4574","DOIUrl":null,"url":null,"abstract":"This reply is addressed to comments on our paper entitled ‘Composition-based Aluminum Alloy Selection Using an Artificial Neural Network.’ There are six main comments, and we addressed the comments carefully. This machine learning (ML) modeling is only part of the development of a broader material selection (or material screening) system. Consideration of other material properties can certainly be included through the integration of ML systems.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4574","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This reply is addressed to comments on our paper entitled ‘Composition-based Aluminum Alloy Selection Using an Artificial Neural Network.’ There are six main comments, and we addressed the comments carefully. This machine learning (ML) modeling is only part of the development of a broader material selection (or material screening) system. Consideration of other material properties can certainly be included through the integration of ML systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 "利用人工神经网络选择基于成分的铝合金 "评论的回复
本答复是针对我们题为《使用人工神经网络进行基于成分的铝合金选择》的论文所提出的意见。主要有六条意见,我们已认真处理了这些意见。这种机器学习(ML)建模只是开发更广泛的材料选择(或材料筛选)系统的一部分。通过集成 ML 系统,当然还可以考虑其他材料特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1