{"title":"Dynamics of stress propagation in anharmonic crystals: MD simulations","authors":"Zbigniew Kozioł","doi":"10.1088/1361-651x/ad4575","DOIUrl":null,"url":null,"abstract":"Anharmonic inter-atomic potential , n > 1, has been used in molecular dynamics (MD) simulations of stress dynamics of FCC oriented crystal. The model of the chain of masses and springs is found as a convenient and accurate description of simulation results, with masses representing the crystallographic planes. The dynamics of oscillations of two planes is found analytically to be given by Euler’s beta functions, and its scaling with non-linearity parameter and amplitude of oscillations, or applied shear pressure is discussed on examples of time dependencies of displacements, velocities, and forces acting on masses (planes). The dynamics of stress penetration from the surface of the sample with multiply-planes (an anharmonic crystal) towards its interior is confirmed to be given exactly as a series of Bessel functions, when n = 2 (Schrödinger and Pater solutions). When n 2 the stress dynamics (wave propagation) in bulk material remains qualitatively of the same nature as in the harmonic case. In particular, results suggest that the quasi-linear relationship between frequency and the wave number is preserved. The speed of the transverse sound component, dependent on sound wave amplitude, is found to be a strongly decreasing function of n. The results are useful in the analysis of any MD simulations under pressure, as they help to understand the dynamics of pressure retarded effects, as well as help design the proper methodology of performing MD simulations in cases such as, for instance, studies of the dynamics of dislocations.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4575","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anharmonic inter-atomic potential , n > 1, has been used in molecular dynamics (MD) simulations of stress dynamics of FCC oriented crystal. The model of the chain of masses and springs is found as a convenient and accurate description of simulation results, with masses representing the crystallographic planes. The dynamics of oscillations of two planes is found analytically to be given by Euler’s beta functions, and its scaling with non-linearity parameter and amplitude of oscillations, or applied shear pressure is discussed on examples of time dependencies of displacements, velocities, and forces acting on masses (planes). The dynamics of stress penetration from the surface of the sample with multiply-planes (an anharmonic crystal) towards its interior is confirmed to be given exactly as a series of Bessel functions, when n = 2 (Schrödinger and Pater solutions). When n 2 the stress dynamics (wave propagation) in bulk material remains qualitatively of the same nature as in the harmonic case. In particular, results suggest that the quasi-linear relationship between frequency and the wave number is preserved. The speed of the transverse sound component, dependent on sound wave amplitude, is found to be a strongly decreasing function of n. The results are useful in the analysis of any MD simulations under pressure, as they help to understand the dynamics of pressure retarded effects, as well as help design the proper methodology of performing MD simulations in cases such as, for instance, studies of the dynamics of dislocations.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.