Ratio of photosynthetically active radiation to global solar radiation above forest canopy in complex terrain: measurements and analyses based on Qingyuan Ker Towers

IF 4.6 2区 环境科学与生态学 Q1 ECOLOGY Ecological Processes Pub Date : 2024-05-10 DOI:10.1186/s13717-024-00514-8
Shuangtian Li, Qiaoling Yan, Tian Gao, Xingchang Wang, Qingwei Wang, Fengyuan Yu, Deliang Lu, Huaqi Liu, Jinxin Zhang, Jiaojun Zhu
{"title":"Ratio of photosynthetically active radiation to global solar radiation above forest canopy in complex terrain: measurements and analyses based on Qingyuan Ker Towers","authors":"Shuangtian Li, Qiaoling Yan, Tian Gao, Xingchang Wang, Qingwei Wang, Fengyuan Yu, Deliang Lu, Huaqi Liu, Jinxin Zhang, Jiaojun Zhu","doi":"10.1186/s13717-024-00514-8","DOIUrl":null,"url":null,"abstract":"Understanding of the ratio of photosynthetic photon flux density (Qp) to global solar radiation (Rs) (Qp/Rs) is crucial for applying Rs to ecology-related studies. Previous studies reported Qp/Rs and its variations based on measurements from a single observatory tower, instead of multi-site-based measurements over complex terrains. This may neglect spatial heterogeneity in the terrain, creating a gap in an understanding of how terrain affects Qp/Rs and how this effect interacts with meteorological factors. Here the Qingyuan Ker Towers (three towers in a valley with different terrains: T1, T2, and T3) were utilized to measure Qp and Rs over mountainous forests of Northeast China. An airborne LiDAR system was used to generate a digital elevation model, and sky view factor of sectors (SVFs) divided from the field of view of tower’s pyranometer was calculated as a topographic factor to explain the variations of Qp/Rs. The results identified significant differences in Qp/Rs of the three towers at both daily and half-hour scales, with larger differences on clear days than on overcast days. Qp/Rs was positively correlated with SVFs of T1 and T3, while this correlation was negative with that of T2. The effect of SVFs on Qp/Rs interacted with clearness index, water vapor pressure and solar zenith angle. Random forest-based importance assessment demonstrated that explanation (R2) on Qp/Rs was improved when SVFs was included in the predictor variable set, indicating that incorporating terrain effects enhances the prediction accuracy of Qp/Rs. The improvement in the R2 values was more pronounced on clear days than on overcast days, suggesting that the effect of terrain on Qp/Rs depended on sky conditions. All findings suggested that Qp/Rs is affected by terrain, and integrating terrain information into existing Qp/Rs models is a feasible solution to improve Qp/Rs estimates in mountainous areas.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"117 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-024-00514-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding of the ratio of photosynthetic photon flux density (Qp) to global solar radiation (Rs) (Qp/Rs) is crucial for applying Rs to ecology-related studies. Previous studies reported Qp/Rs and its variations based on measurements from a single observatory tower, instead of multi-site-based measurements over complex terrains. This may neglect spatial heterogeneity in the terrain, creating a gap in an understanding of how terrain affects Qp/Rs and how this effect interacts with meteorological factors. Here the Qingyuan Ker Towers (three towers in a valley with different terrains: T1, T2, and T3) were utilized to measure Qp and Rs over mountainous forests of Northeast China. An airborne LiDAR system was used to generate a digital elevation model, and sky view factor of sectors (SVFs) divided from the field of view of tower’s pyranometer was calculated as a topographic factor to explain the variations of Qp/Rs. The results identified significant differences in Qp/Rs of the three towers at both daily and half-hour scales, with larger differences on clear days than on overcast days. Qp/Rs was positively correlated with SVFs of T1 and T3, while this correlation was negative with that of T2. The effect of SVFs on Qp/Rs interacted with clearness index, water vapor pressure and solar zenith angle. Random forest-based importance assessment demonstrated that explanation (R2) on Qp/Rs was improved when SVFs was included in the predictor variable set, indicating that incorporating terrain effects enhances the prediction accuracy of Qp/Rs. The improvement in the R2 values was more pronounced on clear days than on overcast days, suggesting that the effect of terrain on Qp/Rs depended on sky conditions. All findings suggested that Qp/Rs is affected by terrain, and integrating terrain information into existing Qp/Rs models is a feasible solution to improve Qp/Rs estimates in mountainous areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂地形林冠上光合有效辐射与全球太阳辐射之比:基于清远科尔塔的测量与分析
了解光合光子通量密度(Qp)与全球太阳辐射(Rs)之比(Qp/Rs)对于将 Rs 应用于生态学相关研究至关重要。以往的研究是根据单个观测塔的测量结果,而不是复杂地形上的多站点测量结果来报告 Qp/Rs 及其变化的。这可能会忽略地形的空间异质性,从而导致无法了解地形如何影响 Qp/Rs,以及这种影响如何与气象因素相互作用。在此,我们利用清远科尔塔(位于山谷中的三座不同地形的塔:T1、T2 和 T3)测量了中国东北山林上空的 Qp 和 Rs。利用机载激光雷达系统生成了数字高程模型,并计算了从塔的热成像仪视场中划分出来的扇形天空视场因子(SVF),作为地形因子来解释 Qp/Rs 的变化。结果表明,三座高塔的 Qp/Rs 在日尺度和半小时尺度上都存在明显差异,晴天的差异大于阴天。Qp/Rs 与 T1 和 T3 的 SVF 呈正相关,而与 T2 呈负相关。SVF 对 Qp/Rs 的影响与晴朗指数、水汽压和太阳天顶角相互影响。基于随机森林的重要性评估表明,将 SVFs 纳入预测变量集后,Qp/Rs 的解释率(R2)有所提高,这表明纳入地形效应可提高 Qp/Rs 的预测精度。与阴天相比,晴天的 R2 值提高更为明显,这表明地形对 Qp/Rs 的影响取决于天空条件。所有研究结果表明,Qp/Rs 受地形影响,将地形信息纳入现有的 Qp/Rs 模型是改善山区 Qp/Rs 预估的可行方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Processes
Ecological Processes Environmental Science-Ecological Modeling
CiteScore
8.50
自引率
4.20%
发文量
64
审稿时长
13 weeks
期刊介绍: Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.
期刊最新文献
Effects of warming on soil fungal community and its function in a temperate steppe Non-linear response of plant caloric value to N addition and mowing treatments in a meadow steppe Spatial patterns of causality in temperate silvopastoral systems: a perspective on nitrification stability in response to flooding Functional and phylogenetic structure of mammals along elevational gradients in the Central and East Himalayas Fine spatial scale assessment of structure and configuration of vegetation cover for northern bobwhites in grazed pastures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1