Wenchen Shan, Jiepeng Liu, Yao Ding, Y. Frank Chen, Junwen Zhou
{"title":"Multi-population particle swarm optimization algorithm for automatic design of steel frames","authors":"Wenchen Shan, Jiepeng Liu, Yao Ding, Y. Frank Chen, Junwen Zhou","doi":"10.1007/s11709-024-1037-7","DOIUrl":null,"url":null,"abstract":"<p>Steel structures are widely used; however, their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective. Therefore, a multi-population particle swarm optimization (MPPSO) algorithm is developed to optimize the weight of steel frames according to standard design codes. Modifications are made to improve the algorithm performances including the constraint-based strategy, piecewise mean learning strategy and multi-population cooperative strategy. The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes. The related parameter influences on optimization results are discussed. For the representative frame, MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4% lighter. A similar trend can also be observed in cases subjected to Chinese design codes. In addition, a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results. The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes. It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity. The proposed method can be easily generalized to the optimization problem of other structural systems.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1037-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Steel structures are widely used; however, their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective. Therefore, a multi-population particle swarm optimization (MPPSO) algorithm is developed to optimize the weight of steel frames according to standard design codes. Modifications are made to improve the algorithm performances including the constraint-based strategy, piecewise mean learning strategy and multi-population cooperative strategy. The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes. The related parameter influences on optimization results are discussed. For the representative frame, MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4% lighter. A similar trend can also be observed in cases subjected to Chinese design codes. In addition, a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results. The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes. It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity. The proposed method can be easily generalized to the optimization problem of other structural systems.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.