An extended numerical model of the first exothermic peak for three dimensional printed cement-based materials

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI:10.1007/s11709-024-1036-8
Wei Jiang, Wenqian Li, Xi Chen
{"title":"An extended numerical model of the first exothermic peak for three dimensional printed cement-based materials","authors":"Wei Jiang, Wenqian Li, Xi Chen","doi":"10.1007/s11709-024-1036-8","DOIUrl":null,"url":null,"abstract":"<p>The first exothermic peak of cement-based material occurs a few minutes after mixing, and the properties of three dimensional (3D) printed concrete, such as setting time, are very sensitive to this. Against this background, based on the classical Park cement exothermic model of hydration, we propose and construct a numerical model of the first exothermic peak, taking into account the proportions of C<sub>3</sub>S, C<sub>3</sub>A and quicklime in particular. The calculated parameters are calibrated by means of relevant published exothermic test data. It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C<sub>3</sub>S and C<sub>3</sub>A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%–10%. The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration, such as 3D printing.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"131 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1036-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The first exothermic peak of cement-based material occurs a few minutes after mixing, and the properties of three dimensional (3D) printed concrete, such as setting time, are very sensitive to this. Against this background, based on the classical Park cement exothermic model of hydration, we propose and construct a numerical model of the first exothermic peak, taking into account the proportions of C3S, C3A and quicklime in particular. The calculated parameters are calibrated by means of relevant published exothermic test data. It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C3S and C3A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%–10%. The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration, such as 3D printing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维印刷水泥基材料第一个放热峰的扩展数值模型
水泥基材料的第一个放热峰出现在搅拌后几分钟,而三维(3D)打印混凝土的特性(如凝结时间)对此非常敏感。在此背景下,基于经典的帕克水泥水化放热模型,我们提出并构建了第一个放热峰的数值模型,其中特别考虑到了 C3S、C3A 和生石灰的比例。计算参数通过已公布的相关放热试验数据进行校准。结果发现,所开发的模型可以很好地模拟水泥熟料中 C3S 和 C3A 比例从 0% 到 100% 的水化第一个放热峰,并反映出生石灰含量在 8%-10% 时的影响。这项研究的独特价值在于为对水化第一放热峰敏感的应用(如 3D 打印)提供了重要的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1