Multiscale analysis-based peridynamic simulation of fracture in porous media

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-05-09 DOI:10.1007/s11709-024-1043-9
Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui
{"title":"Multiscale analysis-based peridynamic simulation of fracture in porous media","authors":"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui","doi":"10.1007/s11709-024-1043-9","DOIUrl":null,"url":null,"abstract":"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"65 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1043-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度分析的多孔介质断裂周动力学模拟
模拟多孔介质大型结构的断裂仍然是一项具有挑战性的任务。目前的技术要么假设均质模型,忽略微观结构特征,要么采用微观力学模型,而微观力学模型由于其复杂的随机几何和物理特性,以及非线性和多尺度特征,会产生难以承受的计算成本。在本研究中,我们提出了一种基于多尺度分析的双变量水平周动力学(PD)模型,以有效模拟宏观结构断裂。多孔介质中的微结构对宏观结构断裂的影响由两个 PD 参数表示:等效临界拉伸和微模量。等效临界拉伸使用微尺度 PD 模型计算,而等效微模量则通过经典连续介质力学和 PD 模型之间的均质化方法和能量密度等效获得。具有各种微结构的多孔介质的数值实例证明了所提方法的有效性、准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1