{"title":"Concentration of hitting times in Erdős-Rényi graphs","authors":"Andrea Ottolini, Stefan Steinerberger","doi":"10.1002/jgt.23119","DOIUrl":null,"url":null,"abstract":"<p>We consider Erdős-Rényi graphs <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $0\\lt p\\lt 1$</annotation>\n </semantics></math> fixed and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation> $n\\to \\infty $</annotation>\n </semantics></math> and study the expected number of steps, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${H}_{wv}$</annotation>\n </semantics></math>, that a random walk started in <span></span><math>\n <semantics>\n <mrow>\n <mi>w</mi>\n </mrow>\n <annotation> $w$</annotation>\n </semantics></math> needs to first arrive in <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>. A natural guess is that an Erdős-Rényi random graph is so homogeneous that it does not really distinguish between vertices and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </mrow>\n <annotation> ${H}_{wv}=(1+o(1))n$</annotation>\n </semantics></math>. Löwe-Terveer established a CLT for the Mean Starting Hitting Time suggesting <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mi>n</mi>\n <mo>±</mo>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${H}_{wv}=n\\pm {\\mathscr{O}}(\\sqrt{n})$</annotation>\n </semantics></math>. We prove the existence of a strong concentration phenomenon: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mrow>\n <mi>w</mi>\n <mi>v</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${H}_{wv}$</annotation>\n </semantics></math> is given, up to a very small error of size <span></span><math>\n <semantics>\n <mrow>\n <mo>≲</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>log</mi>\n <mi>n</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>∕</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>∕</mo>\n <msqrt>\n <mi>n</mi>\n </msqrt>\n </mrow>\n <annotation> $\\lesssim {(\\mathrm{log}n)}^{3\\unicode{x02215}2}\\unicode{x02215}\\sqrt{n}$</annotation>\n </semantics></math>, by an explicit simple formula involving only the total number of edges <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>E</mi>\n <mo>∣</mo>\n </mrow>\n <annotation> $| E| $</annotation>\n </semantics></math>, the degree <span></span><math>\n <semantics>\n <mrow>\n <mtext>deg</mtext>\n <mrow>\n <mo>(</mo>\n <mi>v</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{deg}(v)$</annotation>\n </semantics></math> and the distance <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $d(v,w)$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Erdős-Rényi graphs for fixed and and study the expected number of steps, , that a random walk started in needs to first arrive in . A natural guess is that an Erdős-Rényi random graph is so homogeneous that it does not really distinguish between vertices and . Löwe-Terveer established a CLT for the Mean Starting Hitting Time suggesting . We prove the existence of a strong concentration phenomenon: is given, up to a very small error of size , by an explicit simple formula involving only the total number of edges , the degree and the distance .