{"title":"A Theory of Alternating Paths and Blossoms from the Perspective of Minimum Length","authors":"Vijay V. Vazirani","doi":"10.1287/moor.2020.0388","DOIUrl":null,"url":null,"abstract":"The Micali–Vazirani (MV) algorithm for finding a maximum cardinality matching in general graphs, which was published in 1980, remains to this day the most efficient known algorithm for the problem. The current paper gives the first complete and correct proof of this algorithm. The MV algorithm resorts to finding minimum-length augmenting paths. However, such paths fail to satisfy an elementary property, called breadth first search honesty in this paper. In the absence of this property, an exponential time algorithm appears to be called for—just for finding one such path. On the other hand, the MV algorithm accomplishes this and additional tasks in linear time. The saving grace is the various “footholds” offered by the underlying structure, which the algorithm uses in order to perform its key tasks efficiently. The theory expounded in this paper elucidates this rich structure and yields a proof of correctness of the algorithm. It may also be of independent interest as a set of well-knit graph-theoretic facts.Funding: This work was supported in part by the National Science Foundation [Grant CCF-2230414].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"41 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2020.0388","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Micali–Vazirani (MV) algorithm for finding a maximum cardinality matching in general graphs, which was published in 1980, remains to this day the most efficient known algorithm for the problem. The current paper gives the first complete and correct proof of this algorithm. The MV algorithm resorts to finding minimum-length augmenting paths. However, such paths fail to satisfy an elementary property, called breadth first search honesty in this paper. In the absence of this property, an exponential time algorithm appears to be called for—just for finding one such path. On the other hand, the MV algorithm accomplishes this and additional tasks in linear time. The saving grace is the various “footholds” offered by the underlying structure, which the algorithm uses in order to perform its key tasks efficiently. The theory expounded in this paper elucidates this rich structure and yields a proof of correctness of the algorithm. It may also be of independent interest as a set of well-knit graph-theoretic facts.Funding: This work was supported in part by the National Science Foundation [Grant CCF-2230414].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.