Nonreciprocal Unconventional Photon Blockade with Kerr Magnons

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-05-08 DOI:10.1002/qute.202400043
Xiao-Hong Fan, Yi-Ning Zhang, Jun-Po Yu, Ming-Yue Liu, Wen-Di He, Hai-Chao Li, Wei Xiong
{"title":"Nonreciprocal Unconventional Photon Blockade with Kerr Magnons","authors":"Xiao-Hong Fan,&nbsp;Yi-Ning Zhang,&nbsp;Jun-Po Yu,&nbsp;Ming-Yue Liu,&nbsp;Wen-Di He,&nbsp;Hai-Chao Li,&nbsp;Wei Xiong","doi":"10.1002/qute.202400043","DOIUrl":null,"url":null,"abstract":"<p>Nonreciprocal devices, allowing to manipulate one-way signals, are crucial to quantum information processing and quantum networks. Here a nonlinear cavity-magnon system is proposed, consisting of a microwave cavity coupled to one or two yttrium–iron–garnet (YIG) spheres supporting magnons with Kerr nonlinearity, to investigate nonreciprocal unconventional photon blockade. The nonreciprocity originates from the direction-dependent Kerr effect, distinctly different from previous proposals with spinning cavities and dissipative couplings. For a single sphere case, nonreciprocal unconventional photon blockade can be realized by manipulating the nonreciprocal destructive interference between two active paths, via varying the Kerr coefficient from positive to negative, or vice versa. By optimizing the system parameters, the perfect and well-tuned nonreciprocal unconventional photon blockade can be predicted. For the case of two spheres with opposite Kerr effects, only reciprocal unconventional photon blockade can be observed when two cavity-magnon coupling strengths Kerr strengths are symmetric. However, when coupling strengths or Kerr strengths become asymmetric, nonreciprocal unconventional photon blockade appears. This implies that two-sphere nonlinear cavity-magnon systems can be used to switch the transition between reciprocal and nonreciprocal unconventional photon blockades. This study offers a potential platform for investigating the nonreciprocal photon blockade effect in nonlinear cavity magnonics.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonreciprocal devices, allowing to manipulate one-way signals, are crucial to quantum information processing and quantum networks. Here a nonlinear cavity-magnon system is proposed, consisting of a microwave cavity coupled to one or two yttrium–iron–garnet (YIG) spheres supporting magnons with Kerr nonlinearity, to investigate nonreciprocal unconventional photon blockade. The nonreciprocity originates from the direction-dependent Kerr effect, distinctly different from previous proposals with spinning cavities and dissipative couplings. For a single sphere case, nonreciprocal unconventional photon blockade can be realized by manipulating the nonreciprocal destructive interference between two active paths, via varying the Kerr coefficient from positive to negative, or vice versa. By optimizing the system parameters, the perfect and well-tuned nonreciprocal unconventional photon blockade can be predicted. For the case of two spheres with opposite Kerr effects, only reciprocal unconventional photon blockade can be observed when two cavity-magnon coupling strengths Kerr strengths are symmetric. However, when coupling strengths or Kerr strengths become asymmetric, nonreciprocal unconventional photon blockade appears. This implies that two-sphere nonlinear cavity-magnon systems can be used to switch the transition between reciprocal and nonreciprocal unconventional photon blockades. This study offers a potential platform for investigating the nonreciprocal photon blockade effect in nonlinear cavity magnonics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用克尔磁子的非互惠非常规光子阻断技术
非互易器件可以操纵单向信号,对量子信息处理和量子网络至关重要。这里提出的非线性空腔-磁子系统由一个微波空腔和一个或两个钇铁石榴石(YIG)球组成,支持具有克尔非线性的磁子,用于研究非互惠的非常规光子封锁。非互惠性源于与方向相关的克尔效应,这与之前使用旋转空腔和耗散耦合的提议截然不同。在单球情况下,非互惠的非常规光子阻挡可以通过将克尔系数从正值变为负值,或反之亦然,操纵两条有源路径之间的非互惠破坏性干涉来实现。通过优化系统参数,可以预测出完美和调谐良好的非互惠非常规光子阻挡。对于两个具有相反克尔效应的球体,只有当两个腔磁耦合强度克尔强度对称时,才能观察到互惠的非常规光子阻滞。然而,当耦合强度或 Kerr 强度变得不对称时,就会出现非对等的非常规光子阻滞。这意味着双球非线性空穴-磁子系统可用于切换互惠和非互惠非常规光子阻滞之间的转换。这项研究为研究非线性空腔磁子学中的非互惠非传统光子封锁效应提供了一个潜在的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Back Cover: Universal Quantum Fisher Information and Simultaneous Occurrence of Landau-Class and Topological-Class Transitions in Non-Hermitian Jaynes-Cummings Models (Adv. Quantum Technol. 10/2024) Front Cover: Solid-State Qubit as an On-Chip Controller for Non-Classical Field States (Adv. Quantum Technol. 10/2024) Inside Front Cover: Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers (Adv. Quantum Technol. 10/2024) Issue Information (Adv. Quantum Technol. 10/2024) Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1