Zewen Wang, Dexiu Hu, Jie Huang, Min Xie, Chuang Zhao
{"title":"Optimal station placement based on grey wolf optimizer for regional target localization","authors":"Zewen Wang, Dexiu Hu, Jie Huang, Min Xie, Chuang Zhao","doi":"10.1186/s13638-024-02349-5","DOIUrl":null,"url":null,"abstract":"<p>The accuracy of target passive localization is influenced by the placement of signal receiving stations; therefore, many studies have been performed to optimize station placement. However, most of the present placement methods focus on the localization error of one target, and if the exact position of the target cannot be determined, but only the range of the target activity is known, how to study the localization station placement in a region is a problem that needs to be solved. This paper proposes a grey wolf optimization algorithm based on the regional target error model to solve the optimal station placement problem. Firstly, a regional target localization error model is established using the measured TDOA, and the overall error matrix within a region is derived. Then, by taking the trace of the error matrix as a criterion, the objective function is established to find the optimal location of the receiving station by grey wolf optimizer. The optimization parameters are also improved to increase the global search ability of the algorithm. Finally, the feasibility and reliability of the overall error model and the grey wolf algorithm proposed are verified by experiments from multiple perspectives. The station placement method proposed in this paper can effectively solve the localization problem of targets that are only known to be in a general activity region in advance, which is more realistic.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"126 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02349-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of target passive localization is influenced by the placement of signal receiving stations; therefore, many studies have been performed to optimize station placement. However, most of the present placement methods focus on the localization error of one target, and if the exact position of the target cannot be determined, but only the range of the target activity is known, how to study the localization station placement in a region is a problem that needs to be solved. This paper proposes a grey wolf optimization algorithm based on the regional target error model to solve the optimal station placement problem. Firstly, a regional target localization error model is established using the measured TDOA, and the overall error matrix within a region is derived. Then, by taking the trace of the error matrix as a criterion, the objective function is established to find the optimal location of the receiving station by grey wolf optimizer. The optimization parameters are also improved to increase the global search ability of the algorithm. Finally, the feasibility and reliability of the overall error model and the grey wolf algorithm proposed are verified by experiments from multiple perspectives. The station placement method proposed in this paper can effectively solve the localization problem of targets that are only known to be in a general activity region in advance, which is more realistic.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.