Probing Multipartite Entanglement Through Persistent Homology

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Mathematical Physics Pub Date : 2024-05-08 DOI:10.1007/s00220-024-04953-4
Gregory A. Hamilton, Felix Leditzky
{"title":"Probing Multipartite Entanglement Through Persistent Homology","authors":"Gregory A. Hamilton, Felix Leditzky","doi":"10.1007/s00220-024-04953-4","DOIUrl":null,"url":null,"abstract":"<p>We propose a study of multipartite entanglement through persistent homology, a tool used in topological data analysis. In persistent homology, a 1-parameter filtration of simplicial complexes called a persistence complex is used to reveal persistent topological features of the underlying data set. This is achieved via the computation of homological invariants that can be visualized as a persistence barcode encoding all relevant topological information. In this work, we apply this technique to study multipartite quantum systems by interpreting the individual systems as vertices of a simplicial complex. To construct a persistence complex from a given multipartite quantum state, we use a generalization of the bipartite mutual information called the deformed total correlation. Computing the persistence barcodes of this complex yields a visualization or ‘topological fingerprint’ of the multipartite entanglement in the quantum state. The barcodes can also be used to compute a topological summary called the integrated Euler characteristic of a persistence complex. We show that in our case this integrated Euler characteristic is equal to the deformed interaction information, another multipartite version of mutual information. When choosing the linear entropy as the underlying entropy, this deformed interaction information coincides with the <i>n</i>-tangle, a well-known entanglement measure. The persistence barcodes thus provide more fine-grained information about the entanglement structure than its topological summary, the <i>n</i>-tangle, alone, which we illustrate with examples of pairs of states with identical <i>n</i>-tangle but different barcodes. Furthermore, a variant of persistent homology computed relative to a fixed subset yields an interesting connection to strong subadditivity and entropy inequalities. We also comment on a possible generalization of our approach to arbitrary resource theories.</p>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s00220-024-04953-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a study of multipartite entanglement through persistent homology, a tool used in topological data analysis. In persistent homology, a 1-parameter filtration of simplicial complexes called a persistence complex is used to reveal persistent topological features of the underlying data set. This is achieved via the computation of homological invariants that can be visualized as a persistence barcode encoding all relevant topological information. In this work, we apply this technique to study multipartite quantum systems by interpreting the individual systems as vertices of a simplicial complex. To construct a persistence complex from a given multipartite quantum state, we use a generalization of the bipartite mutual information called the deformed total correlation. Computing the persistence barcodes of this complex yields a visualization or ‘topological fingerprint’ of the multipartite entanglement in the quantum state. The barcodes can also be used to compute a topological summary called the integrated Euler characteristic of a persistence complex. We show that in our case this integrated Euler characteristic is equal to the deformed interaction information, another multipartite version of mutual information. When choosing the linear entropy as the underlying entropy, this deformed interaction information coincides with the n-tangle, a well-known entanglement measure. The persistence barcodes thus provide more fine-grained information about the entanglement structure than its topological summary, the n-tangle, alone, which we illustrate with examples of pairs of states with identical n-tangle but different barcodes. Furthermore, a variant of persistent homology computed relative to a fixed subset yields an interesting connection to strong subadditivity and entropy inequalities. We also comment on a possible generalization of our approach to arbitrary resource theories.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过持久同源性探测多方纠缠
我们建议通过持久同调(拓扑数据分析中使用的一种工具)来研究多方纠缠。在持久同调学中,被称为持久复数的简单复数的单参数过滤被用来揭示底层数据集的持久拓扑特征。这可以通过计算同调不变式来实现,而同调不变式可以可视化为一个持久性条形码,编码所有相关的拓扑信息。在这项工作中,我们将这一技术应用于研究多方量子系统,将单个系统解释为简单复合物的顶点。为了从给定的多方量子态构建持久性复合物,我们使用了双方互信息的广义化,即变形总相关性。计算这个复合物的持久性条形码,就能得到量子态中多方位纠缠的可视化或 "拓扑指纹"。条形码还可用于计算拓扑总结,即持久性复合物的综合欧拉特性。我们的研究表明,在我们的研究中,这个综合欧拉特性等于变形相互作用信息,即互信息的另一个多部分版本。当选择线性熵作为基础熵时,这种变形交互信息与 n-tangle 重合,这是一种著名的纠缠度量。因此,持久性条形码提供的纠缠结构信息比其拓扑摘要(n-tangle)更精细,我们以具有相同 n-tangle 但不同条形码的状态对为例加以说明。此外,相对于一个固定子集计算的持久同调变体与强子增添性和熵不等式有着有趣的联系。我们还评论了将我们的方法推广到任意资源理论的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
期刊最新文献
Singular Continuous Phase for Schrödinger Operators Over Circle Maps with Breaks Homotopy Classification of Loops of Clifford Unitaries Approximating the Stationary Distribution of the ASEP with Open Boundaries Algebraic Connectedness and Bipartiteness of Quantum Graphs Quantum Differential and Difference Equations for $$\textrm{Hilb}^{n}(\mathbb {C}^2)$$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1