Coal tar-pitch derived porous carbons with zinc oxide nanoparticles as a dual-functional template and activating agent for high-performance supercapacitors
Zaheer Abbas, Jai Kumar, Razium Ali Soomro, Ning Sun, Zhaoxin Yu, Bin Xu
{"title":"Coal tar-pitch derived porous carbons with zinc oxide nanoparticles as a dual-functional template and activating agent for high-performance supercapacitors","authors":"Zaheer Abbas, Jai Kumar, Razium Ali Soomro, Ning Sun, Zhaoxin Yu, Bin Xu","doi":"10.1007/s10934-024-01629-1","DOIUrl":null,"url":null,"abstract":"<div><p>The development of advanced carbon materials is indispensable for high-performance supercapacitors. Herein, we report the direct pyrolysis of waste coal-tar pitch (CTP) with ZnO nanoparticles (Zn NPs) to produce hierarchical porous carbon materials (HPCs). The CTP served as a carbon source, and the embedded ZnO NPs as a simultaneous templating and activating agent for HPCs. At an optimum temperature of 800 °C, the produced HPCs (HPC-800) realized an optimal specific surface area (1267 m<sup>2</sup> g<sup>-1</sup>) and pore volume of 1.71 cm<sup>3</sup> g<sup>-1</sup>, enabling the devised capacitor to exhibit a specific capacitance of 172 F g<sup>-1</sup> at a current density of 0.1 A g<sup>-1</sup> in 6 M KOH electrolyte and a capacitance retention of 81% (0.1–30 A g<sup>-1</sup>). The as-symmetrical device could deliver an energy density of 8.3 Wh∙kg<sup>-1</sup> at a high-power density of 50.0 W∙kg<sup>-1</sup> and retained energy density of 4.9 Wh∙kg<sup>-1</sup> at a power density of 11.9 kW∙kg<sup>-1</sup>.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1727 - 1736"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01629-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced carbon materials is indispensable for high-performance supercapacitors. Herein, we report the direct pyrolysis of waste coal-tar pitch (CTP) with ZnO nanoparticles (Zn NPs) to produce hierarchical porous carbon materials (HPCs). The CTP served as a carbon source, and the embedded ZnO NPs as a simultaneous templating and activating agent for HPCs. At an optimum temperature of 800 °C, the produced HPCs (HPC-800) realized an optimal specific surface area (1267 m2 g-1) and pore volume of 1.71 cm3 g-1, enabling the devised capacitor to exhibit a specific capacitance of 172 F g-1 at a current density of 0.1 A g-1 in 6 M KOH electrolyte and a capacitance retention of 81% (0.1–30 A g-1). The as-symmetrical device could deliver an energy density of 8.3 Wh∙kg-1 at a high-power density of 50.0 W∙kg-1 and retained energy density of 4.9 Wh∙kg-1 at a power density of 11.9 kW∙kg-1.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.