{"title":"Removing Banding Artifacts in HDR Videos Generated From Inverse Tone Mapping","authors":"Fei Zhou;Zikang Zheng;Guoping Qiu","doi":"10.1109/TBC.2024.3394297","DOIUrl":null,"url":null,"abstract":"Displaying standard dynamic range (SDR) videos on high dynamic range (HDR) devices requires inverse tone mapping (ITM). However, such mapping can introduce banding artifacts. This paper presents a banding removal method for inversely tone mapped HDR videos based on deep convolutional neural networks (DCNNs) and adaptive filtering. Three banding relevant feature maps are first extracted and then fed to two DCNNs, a ShapeNet and a PositionNet. The PositionNet learns a soft mask indicating the locations where banding is likely to have occurred and filtering is required while the ShapeNet predicts the filter shapes appropriate for different locations. An advantage of the method is that the adaptive filters can be jointly optimized with a learning-based ITM algorithm for creating high-quality HDR videos. Experimental results show that our method outperforms state-of-the-art algorithms qualitatively and quantitatively.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"753-762"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10528806/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Displaying standard dynamic range (SDR) videos on high dynamic range (HDR) devices requires inverse tone mapping (ITM). However, such mapping can introduce banding artifacts. This paper presents a banding removal method for inversely tone mapped HDR videos based on deep convolutional neural networks (DCNNs) and adaptive filtering. Three banding relevant feature maps are first extracted and then fed to two DCNNs, a ShapeNet and a PositionNet. The PositionNet learns a soft mask indicating the locations where banding is likely to have occurred and filtering is required while the ShapeNet predicts the filter shapes appropriate for different locations. An advantage of the method is that the adaptive filters can be jointly optimized with a learning-based ITM algorithm for creating high-quality HDR videos. Experimental results show that our method outperforms state-of-the-art algorithms qualitatively and quantitatively.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”