Durable and efficient urea electrosynthesis using carbon dioxide and nitrate over defect-rich In2O3 nanotubes†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-06-04 DOI:10.1039/d4gc01630k
Hongjun Fang , Chen-Han Kuo , Hongsheng Yang , Ze Wang , Xinzhen Feng , Weijie Ji , Chak-Tong Au
{"title":"Durable and efficient urea electrosynthesis using carbon dioxide and nitrate over defect-rich In2O3 nanotubes†","authors":"Hongjun Fang ,&nbsp;Chen-Han Kuo ,&nbsp;Hongsheng Yang ,&nbsp;Ze Wang ,&nbsp;Xinzhen Feng ,&nbsp;Weijie Ji ,&nbsp;Chak-Tong Au","doi":"10.1039/d4gc01630k","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical conversion of CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> waste (EC-CO<sub>2</sub>/NO<sub>3</sub><sup>−</sup>) into valuable urea is a promising method for fertilizer production and environmental remediation, but its practical application is currently limited by the low efficiency of electrocatalytic processes. Here, we report a novel In<sub>2</sub>O<sub>3</sub> nanotube (In<sub>2</sub>O<sub>3</sub>-NT) material derived from a metal–organic framework (MOF) which functions as an electrocatalyst for durable and efficient urea synthesis <em>via</em> EC-CO<sub>2</sub>/NO<sub>3</sub><sup>−</sup>. The obtained In<sub>2</sub>O<sub>3</sub>-NT-500 with a porous structure and rich oxygen vacancies (Vo) is more conducive to the target reaction system, reaching a urea formation rate of 1441 μg mg<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> with a high faradaic efficiency of 60.3%, exhibiting the top-level performance toward urea synthesis <em>via</em> the current route. <em>In situ</em> attenuated total reflection Fourier transform infrared spectroscopy verified that In<sub>2</sub>O<sub>3</sub>-NT with enriched Vo could stabilize the *CO<sub>2</sub>NH<sub>2</sub> intermediate, thus accelerating the rate-determining step (RDS). The DFT simulation demonstrated that the transformation of *COOHNH<sub>2</sub> to *CONH<sub>2</sub> is the RDS for urea formation. The defect-engineered In<sub>2</sub>O<sub>3</sub>-NT catalyst significantly lowers the energy barrier for this step, thus boosting the overall efficiency of urea synthesis. This work provides an example showing that the defect engineering of In<sub>2</sub>O<sub>3</sub>-NT is highly capable of activating CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> waste molecules for urea synthesis, and is conceptually versatile for other value-added chemical production methods.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224004904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical conversion of CO2 and NO3 waste (EC-CO2/NO3) into valuable urea is a promising method for fertilizer production and environmental remediation, but its practical application is currently limited by the low efficiency of electrocatalytic processes. Here, we report a novel In2O3 nanotube (In2O3-NT) material derived from a metal–organic framework (MOF) which functions as an electrocatalyst for durable and efficient urea synthesis via EC-CO2/NO3. The obtained In2O3-NT-500 with a porous structure and rich oxygen vacancies (Vo) is more conducive to the target reaction system, reaching a urea formation rate of 1441 μg mgcat−1 h−1 with a high faradaic efficiency of 60.3%, exhibiting the top-level performance toward urea synthesis via the current route. In situ attenuated total reflection Fourier transform infrared spectroscopy verified that In2O3-NT with enriched Vo could stabilize the *CO2NH2 intermediate, thus accelerating the rate-determining step (RDS). The DFT simulation demonstrated that the transformation of *COOHNH2 to *CONH2 is the RDS for urea formation. The defect-engineered In2O3-NT catalyst significantly lowers the energy barrier for this step, thus boosting the overall efficiency of urea synthesis. This work provides an example showing that the defect engineering of In2O3-NT is highly capable of activating CO2 and NO3 waste molecules for urea synthesis, and is conceptually versatile for other value-added chemical production methods.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在富含缺陷的 In2O3 纳米管上利用二氧化碳和硝酸盐进行持久高效的尿素电合成
将二氧化碳和 NO3- 废物(EC-CO2/NO3-)电化学转化为有价值的尿素是一种很有前景的肥料生产和环境修复方法,但目前其实际应用受到电催化过程效率低的限制。在此,我们报告了一种新型 In2O3 纳米管(In2O3-NT)材料,该材料由金属有机框架(MOF)衍生而来,可作为电催化剂通过 EC-CO2/NO3- 持久高效地合成尿素。所获得的 In2O3-NT-500 具有多孔结构和丰富的氧空位(Vo),更有利于目标反应体系,尿素形成率达到 1441 μg mgcat-1 h-1,远红外效率高达 60.3%,表现出通过当前路线合成尿素的顶级性能。原位衰减全反射傅立叶变换红外光谱验证了富含 Vo 的 In2O3-NT 可以稳定 *CO2NH2 中间体,从而加速速率决定步骤(RDS)。DFT 模拟证明,*COOHNH2 向*CONH2 的转化是尿素形成的 RDS。缺陷工程 In2O3-NT 催化剂大大降低了这一步骤的能垒,从而提高了尿素合成的整体效率。这项工作提供了一个实例,表明 In2O3-NT 的缺陷工程能够高度活化二氧化碳和 NO3- 废分子,用于尿素合成,并且在概念上可用于其他增值化学生产方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Correction: Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol Rational bottom-up synthesis of sulphur-rich porous carbons for single-atomic platinum catalyst supports Balancing computational chemistry's potential with its environmental impact Correction: Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-atom source Low-chromophore lignin isolation from natural biomass with polyol-based deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1