Design of Highly Porous Materials Based on Chitosan/Pectin Interpolyelectrolyte Complex for Wound Healing Application

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL Advances in Polymer Technology Pub Date : 2024-05-09 DOI:10.1155/2024/8747902
Aliaksandr Kraskouski, Maksim Mashkin, Viktoryia Kulikouskaya, Viktoryia Savich, Anastasiya Sidarenka, Sergei Pinchuk, Ruibin Li
{"title":"Design of Highly Porous Materials Based on Chitosan/Pectin Interpolyelectrolyte Complex for Wound Healing Application","authors":"Aliaksandr Kraskouski,&nbsp;Maksim Mashkin,&nbsp;Viktoryia Kulikouskaya,&nbsp;Viktoryia Savich,&nbsp;Anastasiya Sidarenka,&nbsp;Sergei Pinchuk,&nbsp;Ruibin Li","doi":"10.1155/2024/8747902","DOIUrl":null,"url":null,"abstract":"<p>Interpolyelectrolyte complexes (IPECs) of polysaccharides are multifunctional polymer materials that improve the mechanical and physicochemical properties of individual polysaccharides. In this study, highly porous (&gt;90%) materials based on IPECs of versatile natural polysaccharides, chitosan (30 and 1,200 kDa) and pectin, are obtained by freeze-drying technique. To enhance the interaction between chitosan and pectin macromolecules, the latter are chemically functionalized with dialdehyde groups. The chitosan-/aldehyde-functionalized pectin (Chit/AF-Pect) polyelectrolyte complex sponges obtained are characterized using SEM, FTIR spectroscopy, and TGA. The swelling capacity study reveals a higher swelling ratio of IPEC sponges with an increase in both the molecular weight and content of chitosan: for Chit30/AF-Pect, the swelling ratio rises from 327% to 480%, while for Chit1200/AF-Pect, from 681% to 1,066%. Additionally, the in vitro degradation test demonstrates higher stability of Chit1200/AF-Pect sponges in comparison with those of Chit30/AF-Pect: after 4 days of incubation, the weight losses are found to be 9%–16% and 18%–41%, respectively. The cytotoxicity study shows that Chit30/AF-Pect sponges are noncytotoxic, with cell viability values &gt;70%. Furthermore, the Chit30/AF-Pect sponges, obtained at chitosan:pectin weight ratio of 5:1, exhibit bactericidal activity against <i>Escherichia coli</i> BIM B-984 G, <i>Pseudomonas aeruginosa</i> BIM B-807 G, <i>Staphylococcus aureus</i> BIM B-1841, and slightly inhibit the growth of <i>Enterococcus faecalis</i> BIM B-1530 G. These findings indicate that the obtained Chit30/AF-Pect sponges can be used to create wound dressings for wound healing applications.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8747902","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8747902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interpolyelectrolyte complexes (IPECs) of polysaccharides are multifunctional polymer materials that improve the mechanical and physicochemical properties of individual polysaccharides. In this study, highly porous (>90%) materials based on IPECs of versatile natural polysaccharides, chitosan (30 and 1,200 kDa) and pectin, are obtained by freeze-drying technique. To enhance the interaction between chitosan and pectin macromolecules, the latter are chemically functionalized with dialdehyde groups. The chitosan-/aldehyde-functionalized pectin (Chit/AF-Pect) polyelectrolyte complex sponges obtained are characterized using SEM, FTIR spectroscopy, and TGA. The swelling capacity study reveals a higher swelling ratio of IPEC sponges with an increase in both the molecular weight and content of chitosan: for Chit30/AF-Pect, the swelling ratio rises from 327% to 480%, while for Chit1200/AF-Pect, from 681% to 1,066%. Additionally, the in vitro degradation test demonstrates higher stability of Chit1200/AF-Pect sponges in comparison with those of Chit30/AF-Pect: after 4 days of incubation, the weight losses are found to be 9%–16% and 18%–41%, respectively. The cytotoxicity study shows that Chit30/AF-Pect sponges are noncytotoxic, with cell viability values >70%. Furthermore, the Chit30/AF-Pect sponges, obtained at chitosan:pectin weight ratio of 5:1, exhibit bactericidal activity against Escherichia coli BIM B-984 G, Pseudomonas aeruginosa BIM B-807 G, Staphylococcus aureus BIM B-1841, and slightly inhibit the growth of Enterococcus faecalis BIM B-1530 G. These findings indicate that the obtained Chit30/AF-Pect sponges can be used to create wound dressings for wound healing applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计基于壳聚糖/果胶间聚电解质复合物的高多孔材料,用于伤口愈合应用
多糖间电解质复合物(IPECs)是一种多功能聚合物材料,可改善单个多糖的机械和理化特性。本研究通过冷冻干燥技术获得了基于多功能天然多糖--壳聚糖(30 和 1,200 kDa)和果胶--的 IPECs 的高孔隙率(90%)材料。为了增强壳聚糖和果胶大分子之间的相互作用,果胶大分子被二醛基团化学官能化。利用扫描电镜、傅立叶变换红外光谱和热重分析法对获得的壳聚糖/甲醛官能化果胶(Chit/AF-Pect)聚电解质复合物海绵进行了表征。溶胀能力研究表明,随着壳聚糖分子量和含量的增加,IPEC 海绵的溶胀率也会增加:Chit30/AF-Pect 的溶胀率从 327% 增加到 480%,而 Chit1200/AF-Pect 的溶胀率则从 681% 增加到 1066%。此外,体外降解测试表明,与 Chit30/AF-Pect 相比,Chit1200/AF-Pect 海绵具有更高的稳定性:培养 4 天后,重量损失分别为 9%-16% 和 18%-41%。细胞毒性研究表明,Chit30/AF-Pect 海绵无细胞毒性,细胞存活率为 70%。此外,壳聚糖与果胶重量比为 5:1 的 Chit30/AF-Pect 海绵对大肠杆菌 BIM B-984 G、铜绿假单胞菌 BIM B-807 G 和金黄色葡萄球菌 BIM B-1841 具有杀菌活性,并能轻微抑制粪肠球菌 BIM B-1530 G 的生长。这些研究结果表明,获得的 Chit30/AF-Pect 海绵可用于制作伤口愈合用敷料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
期刊最新文献
Fabrication and Compression Properties of Reinforced Epoxy Syntactic Foam With Basalt Fiber Incorporation of Capecitabine Into Extended Chain of N-Acylated Chitosan Carrier Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications Antibacterial Effect of Copper Oxide Nanoparticles on Polyvinyl Chloride-Based Polymer Nanocomposite Synthesis of Hydrogel Based on Poly (Acrylic Acid–Co-Vinyl Acetate) Grafted on Modified Recycled Cellulose for Use in Fertilizer Slow-Release System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1